
A Practical
Introduction to

zkVMs
OSCW 2025

What is a zkVM?
01

TL;DR

A virtual machine implemented using algebraic
circuits, rather than silicon.

Provable execution of any program compiled to
the target ISA (e.g. RISC-V, WASM)

3

Key properties
4

Knowledge soundness
It is computationally infeasible to produce a proof without knowledge of a valid execution trace.

Zero-knowledge (privacy)
The proof reveals no information, beyond the public claim.

Succinctness
Verifying a proof is asymptotically more efficient than re-executing the computation.

Misconception

Most “zero-knowledge VMs” don’t formally
provide zero-knowledge.

*Some do provide weaker notions of privacy

5

How is it built?
02

Execution trace
Basically a table, with each row containing a “cycle” of the processor, the state of the
hardware registers at a point in “time”

Constraints within and between row act as the wiring and gates that implement the state.

Memory
Random access memory (RAM) is provided by a permutation argument, which uses a
multiset equivalency check to establish that the values read equal the values written.

Startup & shutdown
At the start of execution,
initial memory state is
loaded from a memory image.

At the end of execution,
the final memory state is stored
and any output is committed.

Segments
Proving can only handle bounded size execution traces (e.g. 1M cycles).

Long executions are broken into segments, linked by the initial and final memory images.

Compute Compression
Each segment produces a separate proof. Total proof size grows linearly.

A 1 million cycle segment has a proof of ~270 kB.
1 billion cycles, split into 1000 segments of 1 million cycles produces ~270 MB

Proofs are compressed via recursive verification of 2 proofs to produce 1 proof.

Can be further compressed with recursive verification via Groth16 or KZG-Plonk.

Compute Compression

Battleship
03

Battleship

Battleship

Game starts by choosing an arrangement of ships
on their board.

Players take turns taking shots at opponent.

Game ends when a player’s ships are sunk.

(Logical) Parties

(Logical) Parties

github.com/nategraf/oscw-zkvms-battleship

Next steps
04

Deploying an application
Image IDs act as the verification key (aka a public key) for for guest program.

Like public keys, distributing this image ID securely to the verifier is critical.

Embedding the image ID as a constant in your program is the most common solution.

Making this image ID recoverable from the source code increases transparency. RISC Zero
and other zkVMs support reproducible builds (by running Cargo in a Docker container).

Optimization
Optimizing guest applications is often key to making proving practical.

Optimizing a guest program is 80% the same as optimizing any other program.

RISC Zero supports generation of flame graphs.

RISC0_PPROF_OUT=profile.pb RISC0_DEV_MODE=1 cargo run

Cryptography acceleration in the guest
Many guests need to run cryptography such as signature verification or hashing.

Using RISC-V to implement cryptography can take a large amount of execution cycles,
making proving slow and expensive.

RISC Zero and other zkVMs support “accelerators” or “precompiles” which utilize additional
algebraic circuits to act as a “coprocessor” to the CPU.

More questions?
victor@risczero.com

Examples
RISC Zero RISC-V RISC Zero (STARK)

SP1 RISC-V Plonky3 (STARK)

Jolt RISC-V Jolt

OpenVM RISC-V Plonky3 (STARK)

Polygon Miden Custom Miden (STARK)

Cairo Custom Stone & Stwo (STARK)

Polygon zkEVM EVM STARK

ZKSync Era EVM Boojum (STARK)

ISA Proof system

