

Shufflecake
Plausible Deniability in 2025

Tommaso Gagliardoni, Horizen Labs
From a joint work with Elia Anzuoni

Open Source Cryptography Workshop 2025
2025-03-25, Sofia, Bulgaria

Shufflecake: TL;DR
● Encrypts, hides existence of disk partitions

● Plausible deniability like TrueCrypt/VeraCrypt

● Security and usability improvements

● Cryptographic proof of security

● Faster than ORAM-based solutions

● Potential to improve security even further

● FLOSS (“free” as in “freedom”)

3 / 40

Shufflecake: TL;DR

4 / 40

Who am I
Tommaso “tomgag” Gagliardoni
● PhD in cryptography at TU Darmstadt, Germany
● Past: IBM Research, Kudelski Security
● Now: Horizen Labs, based in Zurich
● Focus on privacy, cryptography, quantum security, web3

5 / 40

Who am I
Tommaso “tomgag” Gagliardoni
● PhD in cryptography at TU Darmstadt, Germany
● Past: IBM Research, Kudelski Security
● Now: Horizen Labs, based in Zurich
● Focus on privacy, cryptography, quantum security, web3

More business Less business

5 / 40

Overview
● TL;DR
● Bio
● Introduction
● TrueCrypt (and VeraCrypt)
● Shufflecake
● Implementation
● Future directions
● How to contribute

You are here

6 / 40

Introduction

7 / 40

Introduction

● BitLocker (Windows)
● FileVault 2 (MacOS)
● LUKS (Linux)
● ...

7 / 40

Introduction

● BitLocker (Windows)
● FileVault 2 (MacOS)
● LUKS (Linux)
● ...

Source: https://xkcd.com/538/

7 / 40

How bad is it?

8 / 40

How bad is it?

8 / 40

Plausible Deniability (idea)
Must hide sensitive information in undetectable way

9 / 40

Plausible Deniability (idea)
Must hide sensitive information in undetectable way

But at the same time must be “plausible”
● You have PD software installed – can’t deny existence of encryption
● “I forgot the password” – nope
● Must “give in” some decoy data and hide the rest

9 / 40

Plausible Deniability (idea)
Must hide sensitive information in undetectable way

But at the same time must be “plausible”
● You have PD software installed – can’t deny existence of encryption
● “I forgot the password” – nope
● Must “give in” some decoy data and hide the rest

Example:
● Disk is obviously encrypted
● Password 1 unlocks cat pictures
● Password 2 unlocks Panama Papers
● No way to prove that password 2 exists

9 / 40

Plausible Deniability (idea)
Must hide sensitive information in undetectable way

But at the same time must be “plausible”
● You have PD software installed – can’t deny existence of encryption
● “I forgot the password” – nope
● Must “give in” some decoy data and hide the rest

Example:
● Disk is obviously encrypted
● Password 1 unlocks cat pictures
● Password 2 unlocks Panama Papers
● No way to prove that password 2 exists

Note: different from Steganography

9 / 40

Who is this for?
● Repressed minorities in low-democracy countries
● Investigative journalists
● Whistleblowers
● Human right activists in repressive regimes

10 / 40

Plausible Deniability (formally)
● Game-based security notion, Adversary VS Challenger
● Very similar in spirit to IND-CPA

11 / 40

Plausible Deniability (formally)
● Game-based security notion, Adversary VS Challenger
● Very similar in spirit to IND-CPA
● Adversary chooses N-1 passwords
● Challenger flips random bit b

● If b=0 then initializes scheme with N-1 secret volumes
● If b=1 then samples another high entropy password and

initializes scheme with N secret volumes

11 / 40

Plausible Deniability (formally)
● Game-based security notion, Adversary VS Challenger
● Very similar in spirit to IND-CPA
● Adversary chooses N-1 passwords
● Challenger flips random bit b

● If b=0 then initializes scheme with N-1 secret volumes
● If b=1 then samples another high entropy password and

initializes scheme with N secret volumes
● Adversary can then submit queries to Challenger
● Each query is a pair of access patterns* i.e. read/write sequences
● Only one of the two is executed, depending on b

11 / 40

Plausible Deniability (formally)
● Game-based security notion, Adversary VS Challenger
● Very similar in spirit to IND-CPA
● Adversary chooses N-1 passwords
● Challenger flips random bit b

● If b=0 then initializes scheme with N-1 secret volumes
● If b=1 then samples another high entropy password and

initializes scheme with N secret volumes
● Adversary can then submit queries to Challenger
● Each query is a pair of access patterns* i.e. read/write sequences
● Only one of the two is executed, depending on b
● Adversary can request snapshots of the disk*
● Eventually, Adversary must guess b with good advantage

11 / 40

Plausible Deniability (formally)
● Game-based security notion, Adversary VS Challenger
● Very similar in spirit to IND-CPA
● Adversary chooses N-1 passwords
● Challenger flips random bit b

● If b=0 then initializes scheme with N-1 secret volumes
● If b=1 then samples another high entropy password and

initializes scheme with N secret volumes
● Adversary can then submit queries to Challenger
● Each query is a pair of access patterns* i.e. read/write sequences
● Only one of the two is executed, depending on b
● Adversary can request snapshots of the disk*
● Eventually, Adversary must guess b with good advantage

* : with certain restrictions, depending on the “flavor” of PD

11 / 40

TrueCrypt (and VeraCrypt)
TrueCrypt: one of the earliest,
efficient full-disk encryption software
(released 2004)

12 / 40

TrueCrypt (and VeraCrypt)
TrueCrypt: one of the earliest,
efficient full-disk encryption software
(released 2004)

Troubled history, discontinued in
2014, replaced by VeraCrypt

12 / 40

TrueCrypt (and VeraCrypt)
TrueCrypt: one of the earliest,
efficient full-disk encryption software
(released 2004)

Troubled history, discontinued in
2014, replaced by VeraCrypt

Empty Space

Normal (Disk Encryption) Mode

User data

12 / 40

TrueCrypt (and VeraCrypt)
TrueCrypt: one of the earliest,
efficient full-disk encryption software
(released 2004)

Troubled history, discontinued in
2014, replaced by VeraCrypt

Empty Space

Empty Space (FAT16 Filesystem: Contiguous)Hidden Volume

Plausible Deniability Mode

Normal (Disk Encryption) Mode

User data

Decoy data

12 / 40

TrueCrypt (and VeraCrypt)
TrueCrypt: one of the earliest,
efficient full-disk encryption software
(released 2004)

Troubled history, discontinued in
2014, replaced by VeraCrypt

Plausible Deniability Mode

Normal (Disk Encryption) Mode

User data

Decoy data

12 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

Objections

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

Objections
● TrueCrypt is dead, we use VeraCrypt now

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

Objections
● TrueCrypt is dead, we use VeraCrypt now Same.

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

● I still use FAT on my laptop

Objections
● TrueCrypt is dead, we use VeraCrypt now Same.

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

● I still use FAT on my laptop
● I only use the FDE feature of VeraCrypt

Objections
● TrueCrypt is dead, we use VeraCrypt now Same.

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

● I still use FAT on my laptop
● I only use the FDE feature of VeraCrypt
● LUKS can do plausible deniability too, you just

need to fill the disc with random data, make a bootable USB

drive with your bootloader on it, make a LUKS header only file on that USB drive,

and then create an encrypted filesystem on the disc using that detached header file. You'll want to backup

that header file, and possibly hide it with another encrypted volume using a headerless encryption on the USB drive.

It's OK as long as both the USB drive and the disc stay inside the pentacle you just painted on the floor with black chicken blood.

Objections
● TrueCrypt is dead, we use VeraCrypt now Same.

13 / 40

Problems with TrueCrypt
● Container must be FAT (NTFS with heavy limitations)
● Only 2 layers of secrecy
● Cannot use them concurrently (decoy volume read-only)

● I still use FAT on my laptop
● I only use the FDE feature of VeraCrypt
● LUKS can do plausible deniability too, you just

need to fill the disc with random data, make a bootable USB

drive with your bootloader on it, make a LUKS header only file on that USB drive,

and then create an encrypted filesystem on the disc using that detached header file. You'll want to backup

that header file, and possibly hide it with another encrypted volume using a headerless encryption on the USB drive.

It's OK as long as both the USB drive and the disc stay inside the pentacle you just painted on the floor with black chicken blood.

Objections
● TrueCrypt is dead, we use VeraCrypt now Same.

13 / 40

Shufflecake

● Native for Linux
● File-System agnostic
● Many nested layers
● Concurrent volume use
● One password to open
● GPLv2

14 / 40

Shufflecake

● Native for Linux
● File-System agnostic
● Many nested layers
● Concurrent volume use
● One password to open
● GPLv2 “or superior”

14 / 40

Shufflecake
Operating Principles

● One device = multiple volumes (with concurrency)
● 1 volume = 1 password
● Volumes are numbered (from least to most secret)
● Unlocking volume N also unlocks volume N-1

15 / 40

Shufflecake
Operating Principles

● One device = multiple volumes (with concurrency)
● 1 volume = 1 password
● Volumes are numbered (from least to most secret)
● Unlocking volume N also unlocks volume N-1

Cryptography
● Well-established schemes (AES, Argon2)
● Cryptographic security proof (single-snapshot)

15 / 40

Shufflecake: disk layout

Header size: 60 MiB for a

1 TB device (worst case)

16 / 40

Shufflecake: disk layout

Header size: 60 MiB for a

1 TB device (worst case)

16 / 40

Shufflecake: implementation

device

shufflecake
-userland

User space

dm-sflc

Kernel space

● Userspace can leverage

more advanced crypto
● Also better for error

handling, interfacing, etc

18 / 40

Shufflecake: implementation

device

shufflecake
-userland

User space

dm-sflc

Kernel space

 Volume 1

 Volume 2

 Volume 3...

● Userspace can leverage

more advanced crypto
● Also better for error

handling, interfacing, etc
● Hidden volumes appear

as /dev/mapper/sflc_X_Y
● They can be used as any

other block device

(formatted at wish,

mounted, etc)

18 / 40

Let’s talk about multi-snapshot

Physical volume (hard disk/partition)

Decoy data
(FAT filesystem) Empty space (?)

19 / 40

Let’s talk about multi-snapshot

“modern” solid-state drives: caching / layering / TRIM

Decoy data
(FAT filesystem)

Decoy data
(FAT filesystem)

Decoy data
(FAT filesystem)

20 / 40

Let’s talk about multi-snapshot

“modern” solid-state drives: caching / layering / TRIM

Decoy data
(FAT filesystem)

Decoy data
(FAT filesystem)

Decoy data
(FAT filesystem)

20 / 40

Let’s talk about multi-snapshot

“modern” solid-state drives: caching / layering / TRIM

Decoy data
(FAT filesystem)

Decoy data
(FAT filesystem)

Decoy data
(FAT filesystem)

20 / 40

Can we do better?
● Long story short: multi-snapshot security is hard
● There are techniques to achieve it: ORAMs/woORAMs
● But they have extremely low performance

21 / 40

Can we do better?
● Long story short: multi-snapshot security is hard
● There are techniques to achieve it: ORAMs/woORAMs
● But they have extremely low performance
● Moreover, we think they overpromise

21 / 40

Can we do better?
● Long story short: multi-snapshot security is hard
● There are techniques to achieve it: ORAMs/woORAMs
● But they have extremely low performance
● Moreover, we think they overpromise

● How about practical / legal security?
● What if secure “with high enough” probability?
● What if I’m proved guilty with 2/3 probability?

21 / 40

Can we do better?
● Long story short: multi-snapshot security is hard
● There are techniques to achieve it: ORAMs/woORAMs
● But they have extremely low performance
● Moreover, we think they overpromise

● How about practical / legal security?
● What if secure “with high enough” probability?
● What if I’m proved guilty with 2/3 probability?

● How about operational security?
● Are multi-snapshot attacks realistic at all? Should we care?

21 / 40

Shufflecake “Legacy”
● Initial design of Shufflecake scheme
● Uses AES-CTR to achieve ciphertext re-randomization
● The goal is to exploit re-randomization for multi-snapshot resistance in the

future (kind of a “lightweight ORAM”)
● But needs to write IVs on disk: cumbersome, corruption-prone
● NOT RECOMMENDED

22 / 40

Shufflecake “Legacy”
● Initial design of Shufflecake scheme
● Uses AES-CTR to achieve ciphertext re-randomization
● The goal is to exploit re-randomization for multi-snapshot resistance in the

future (kind of a “lightweight ORAM”)
● But needs to write IVs on disk: cumbersome, corruption-prone
● NOT RECOMMENDED

● ~30% slower than LUKS/VeraCrypt
● Negligible waste of space

22 / 40

Shufflecake “Lite”
Shufflecake v0.5.0 introduces “Lite” scheme
● Uses AES-XTS instead of AES-CTR (like most disk encryption tools)
● As secure as Legacy (single-snapshot)
● Natively crash consistent
● Faster
● More space efficient

23 / 40

Shufflecake “Lite”
Shufflecake v0.5.0 introduces “Lite” scheme
● Uses AES-XTS instead of AES-CTR (like most disk encryption tools)
● As secure as Legacy (single-snapshot)
● Natively crash consistent
● Faster
● More space efficient

23 / 40

Shufflecake “Lite”
Shufflecake v0.5.0 introduces “Lite” scheme
● Uses AES-XTS instead of AES-CTR (like most disk encryption tools)
● As secure as Legacy (single-snapshot)
● Natively crash consistent
● Faster
● More space efficient

Lite as default mode, but

Legacy supported for

backward compatibility

Paper and benchmarks

coming soon...
23 / 40

Shufflecake “Full” (WIP)
Like Shufflecake “Legacy” (use of AES-CTR

for ciphertext rerandomization) but with

added features
● Crash consistency
● (Partial) multi-snapshot security
● “lightweight ORAM” in spirit
● Will not achieve “full” multisnapshot

security
● But goal is to reach “operational” security

(= “stands in court”)

24 / 40

Shufflecake “Full” (WIP)
Like Shufflecake “Legacy” (use of AES-CTR

for ciphertext rerandomization) but with

added features
● Crash consistency
● (Partial) multi-snapshot security
● “lightweight ORAM” in spirit
● Will not achieve “full” multisnapshot

security
● But goal is to reach “operational” security

(= “stands in court”)

Open question: should we

bother? Or is Lite enough?

24 / 40

Future Directions

25 / 40

Chores and external contribution
Shufflecake is still an experimental, very low-level tool

● Expand testing to other Linux distros (now: Debian/Ubuntu)
● make install
● Distribute through DKMS
● Packetization (.deb, .rpm etc)
● Developer documentation

26 / 40

Chores and external contribution
Shufflecake is still an experimental, very low-level tool

● Expand testing to other Linux distros (now: Debian/Ubuntu)
● make install
● Distribute through DKMS
● Packetization (.deb, .rpm etc)
● Developer documentation

● Porting to Rust?
● GUI?

● Port to Windows/iOS?

26 / 40

Work in progress and plans

● Shufflecake “Full”
● Full crash consistency
● Corruption resistance
● (Partial) multi-snapshot security
● Use of volume metadata
● Reclaiming unused slices
● Anti-safeword: unbounded number of volumes
● Hidden Shufflecake OS

27 / 40

Work in progress and plans

● Shufflecake “Full”
● Full crash consistency
● Corruption resistance
● (Partial) multi-snapshot security
● Use of volume metadata
● Reclaiming unused slices
● Anti-safeword: unbounded number of volumes
● Hidden Shufflecake OS

28 / 40

Safeword
● Our implementation has a limit of 15 nested volumes. More than enough.

29 / 40

Safeword
● Our implementation has a limit of 15 nested volumes. More than enough.
● Really? How about 30? Or 300? would things change? How about security?

29 / 40

Safeword
● Our implementation has a limit of 15 nested volumes. More than enough.
● Really? How about 30? Or 300? would things change? How about security?
● Safeword: “I can prove to you that I do not have any other volume”
● Easy to implement on TrueCrypt: just always use a hidden volume.
● Also doable on Shufflecake.

29 / 40

Safeword
● Our implementation has a limit of 15 nested volumes. More than enough.
● Really? How about 30? Or 300? would things change? How about security?
● Safeword: “I can prove to you that I do not have any other volume”
● Easy to implement on TrueCrypt: just always use a hidden volume.
● Also doable on Shufflecake.
● Very bad for operational security.
● If you have even the possibility of implementing a safeword, the attacker will

assume you have it.
● This pushes users to its adoption. This in turns ruins PD for everyone.

29 / 40

Safeword
● Our implementation has a limit of 15 nested volumes. More than enough.
● Really? How about 30? Or 300? would things change? How about security?
● Safeword: “I can prove to you that I do not have any other volume”
● Easy to implement on TrueCrypt: just always use a hidden volume.
● Also doable on Shufflecake.
● Very bad for operational security.
● If you have even the possibility of implementing a safeword, the attacker will

assume you have it.
● This pushes users to its adoption. This in turns ruins PD for everyone.

● Problem understudied: it exists in all PD solutions we are

aware of.
● Only fix: have an unbounded number of nested volumes.

29 / 40

Unbounded number of volumes

● Remember Shufflecake disk layout:
● This clearly cannot work.

30 / 40

Unbounded number of volumes

● Remember Shufflecake disk layout:
● This clearly cannot work.

● Idea: headers as slices at random

positions
● Encrypted, indistinguishable from

data slices

30 / 40

Unbounded number of volumes

● Remember Shufflecake disk layout:
● This clearly cannot work.

● Idea: headers as slices at random

positions
● Encrypted, indistinguishable from

data slices

● Linked list, navigation through

cleartext randomness
● Position maps split into more

list nodes if too large

30 / 40

Shufflecake Hidden OS
● Even if Shufflecake were 100% secure,

the OS *will* leak hidden data

31 / 40

Shufflecake Hidden OS
● Even if Shufflecake were 100% secure,

the OS *will* leak hidden data

User
password

bootloader OS Shufflecake Data

31 / 40

Shufflecake Hidden OS
● Even if Shufflecake were 100% secure,

the OS *will* leak hidden data

● The only solution is to have a hidden OS:

an OS booting from inside a PD container

(like in TrueCrypt’s hidden Windows OS)

User
password

bootloader OS Shufflecake Data

bootloader OSShufflecake Data

31 / 40

Shufflecake Hidden OS
● Even if Shufflecake were 100% secure,

the OS *will* leak hidden data

● The only solution is to have a hidden OS:

an OS booting from inside a PD container

(like in TrueCrypt’s hidden Windows OS)

● A fully hidden OS/distro powered by

Shufflecake is our ultimate PD goal

User
password

bootloader OS Shufflecake Data

bootloader OSShufflecake Data

OS 2 Data 2

31 / 40

Shufflecake Hidden OS
● Even if Shufflecake were 100% secure,

the OS *will* leak hidden data

● The only solution is to have a hidden OS:

an OS booting from inside a PD container

(like in TrueCrypt’s hidden Windows OS)

● A fully hidden OS/distro powered by

Shufflecake is our ultimate PD goal

User
password

bootloader OS Shufflecake Data

● This is probably utopia.

bootloader OSShufflecake Data

OS 2 Data 2

31 / 40

Shufflecake Hidden OS
● Even if Shufflecake were 100% secure,

the OS *will* leak hidden data

● The only solution is to have a hidden OS:

an OS booting from inside a PD container

(like in TrueCrypt’s hidden Windows OS)

● A fully hidden OS/distro powered by

Shufflecake is our ultimate PD goal

User
password

bootloader OS Shufflecake Data

● This is probably utopia.

● We were wrong...

bootloader OSShufflecake Data

OS 2 Data 2

31 / 40

Shufflecake OS
● Important progress on the realization of a fully hidden Shufflecake distro,

even a working prototype! Thanks to Anderson Ronsenberg!

32 / 40

Shufflecake OS
● Important progress on the realization of a fully hidden Shufflecake distro,

even a working prototype! Thanks to Anderson Ronsenberg!
● The idea is to implement Shufflecake as a GRUB module, and let GRUB

decrypt one among many encrypted /boot partitions, each one with their

own kernel. Need to patch GRUB2 for this to work.
● Then kernel is loaded and boot sequence continues. Shufflecake within the

booted OS would decrypt storage and mount other decoy OSes for use.

32 / 40

Shufflecake OS
● Important progress on the realization of a fully hidden Shufflecake distro,

even a working prototype! Thanks to Anderson Ronsenberg!
● The idea is to implement Shufflecake as a GRUB module, and let GRUB

decrypt one among many encrypted /boot partitions, each one with their

own kernel. Need to patch GRUB2 for this to work.
● Then kernel is loaded and boot sequence continues. Shufflecake within the

booted OS would decrypt storage and mount other decoy OSes for use.

● Long-term vision is to use a hypervisor-based OS like Qubes OS.

32 / 40

Shufflecake OS
● Important progress on the realization of a fully hidden Shufflecake distro,

even a working prototype! Thanks to Anderson Ronsenberg!
● The idea is to implement Shufflecake as a GRUB module, and let GRUB

decrypt one among many encrypted /boot partitions, each one with their

own kernel. Need to patch GRUB2 for this to work.
● Then kernel is loaded and boot sequence continues. Shufflecake within the

booted OS would decrypt storage and mount other decoy OSes for use.

● Long-term vision is to use a hypervisor-based OS like Qubes OS.
● Qubes OS’ hypervisor and dom0 would reside in Shufflecake

volume 0 and be opened read-only

32 / 40

Shufflecake OS
● Important progress on the realization of a fully hidden Shufflecake distro,

even a working prototype! Thanks to Anderson Ronsenberg!
● The idea is to implement Shufflecake as a GRUB module, and let GRUB

decrypt one among many encrypted /boot partitions, each one with their

own kernel. Need to patch GRUB2 for this to work.
● Then kernel is loaded and boot sequence continues. Shufflecake within the

booted OS would decrypt storage and mount other decoy OSes for use.

● Long-term vision is to use a hypervisor-based OS like Qubes OS.
● Qubes OS’ hypervisor and dom0 would reside in Shufflecake

volume 0 and be opened read-only
● All other VMs would reside in other Shufflecake volumes.

32 / 40

Shufflecake OS: Roadmap
1) Improve testing and performance of Shufflecake Lite in progress

2) Implement Shufflecake primitives in a new library sflclib and have dm-

sflc and shufflecake-userland depend on that in progress

3) Patch GRUB to support Argon2 KDF and other Shufflecake tweaks done

4) Write sflcdisk GRUB module using sflclib done

5) Patch Qubes OS to support dom0+hypervisor in read-only

mode and allow flashing from another VM planned

6) Patch Qubes OS’ installer planned

34 / 40

How to contribute

● Code https://codeberg.org/shufflecake
● Mastodon @shufflecake@fosstodon.org
● Website https://shufflecake.net
● E-mail website@shufflecake.net
● Jabber xmpp:shufflecake@conference.draugr.de
● Blog: COMING SOON

Thank you for your attention!

35 / 40

mailto:website@shufflecake.net
mailto:shufflecake@conference.draugr.de

Full crash consistency
● Use of AES-CTR is problematic for crash consistency
● There is a “write ciphertext – write IV” window
● Undecryptable data left on disk after crash

36 / 40

Full crash consistency
● Use of AES-CTR is problematic for crash consistency
● There is a “write ciphertext – write IV” window
● Undecryptable data left on disk after crash

Option 1
● Use a 2-circular log for IV (one old, one new)
● First update ciphertext, then update oldest IV (use HMAC to disambiguate)
● Need to make every request write-through – heavy

36 / 40

Full crash consistency
● Use of AES-CTR is problematic for crash consistency
● There is a “write ciphertext – write IV” window
● Undecryptable data left on disk after crash

Option 1
● Use a 2-circular log for IV (one old, one new)
● First update ciphertext, then update oldest IV (use HMAC to disambiguate)
● Need to make every request write-through – heavy

Option 2
● Store IV along data block and make write of block atomic
● Minimum addressable block size (on Linux): 512 bytes
● Use 9-block writes (4096 bytes data + 512 bytes IV block)
● Wastes ~11% space but faster, extra space in IV block to be used

36 / 40

(Partial) multi-snapshot security
Shufflecake is only single-snapshot secure

37 / 40

(Partial) multi-snapshot security
Shufflecake is only single-snapshot secure
● We can exploit re-randomization of AES-CTR

37 / 40

(Partial) multi-snapshot security
Shufflecake is only single-snapshot secure
● We can exploit re-randomization of AES-CTR
● Different ideas leveraging reasonable security assumptions (e.g.: how many

snapshots?)
● Underlying idea: add an (orthogonal) obfuscation procedure

37 / 40

(Partial) multi-snapshot security
Shufflecake is only single-snapshot secure
● We can exploit re-randomization of AES-CTR
● Different ideas leveraging reasonable security assumptions (e.g.: how many

snapshots?)
● Underlying idea: add an (orthogonal) obfuscation procedure
● Obfuscation adds extra noise to the empty space of the most secret)volume

unlocked
● Extra noise makes it appear as if there is still other hidden volumes

37 / 40

(Partial) multi-snapshot security
Shufflecake is only single-snapshot secure
● We can exploit re-randomization of AES-CTR
● Different ideas leveraging reasonable security assumptions (e.g.: how many

snapshots?)
● Underlying idea: add an (orthogonal) obfuscation procedure
● Obfuscation adds extra noise to the empty space of the most secret)volume

unlocked
● Extra noise makes it appear as if there is still other hidden volumes
● Obfuscation can be delegated to a daemon (additional component)
● “Poor man’s ORAM” in spirit

37 / 40

Corruption resistance
● Writing data on decoy volume without unlocking all hidden volumes can

cause volume corruption
● Unavoidable risk (for plausible deniability)

38 / 40

Corruption resistance
● Writing data on decoy volume without unlocking all hidden volumes can

cause volume corruption
● Unavoidable risk (for plausible deniability)
● Recommended usage for user: always unlock all volumes for daily use
● Unlock less only under interrogation
● If corruption happens: recover from backup

38 / 40

Corruption resistance
● Writing data on decoy volume without unlocking all hidden volumes can

cause volume corruption
● Unavoidable risk (for plausible deniability)
● Recommended usage for user: always unlock all volumes for daily use
● Unlock less only under interrogation
● If corruption happens: recover from backup

But mitigation must not be necessary perfect!

38 / 40

Corruption resistance
● Writing data on decoy volume without unlocking all hidden volumes can

cause volume corruption
● Unavoidable risk (for plausible deniability)
● Recommended usage for user: always unlock all volumes for daily use
● Unlock less only under interrogation
● If corruption happens: recover from backup

But mitigation must not be necessary perfect!
● Idea: use redundancy (error-correcting codes)
● Tested with RAID (but cumbersome)

38 / 40

Corruption resistance
● Writing data on decoy volume without unlocking all hidden volumes can

cause volume corruption
● Unavoidable risk (for plausible deniability)
● Recommended usage for user: always unlock all volumes for daily use
● Unlock less only under interrogation
● If corruption happens: recover from backup

But mitigation must not be necessary perfect!
● Idea: use redundancy (error-correcting codes)
● Tested with RAID (but cumbersome)
● Shufflecake reallocates corrupted slices, but recovery left to external tools
● We are implementing API to help external tools
● Open problem: how to protect not only data blocks, but also position map?

38 / 40

Use of volume metadata
Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK

39 / 40

Use of volume metadata
Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK
● Example: mountpoint (and allow Shufflecake to automount)

39 / 40

Use of volume metadata
Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK
● Example: mountpoint (and allow Shufflecake to automount)
● Example: corruption status flag

39 / 40

Use of volume metadata
Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK
● Example: mountpoint (and allow Shufflecake to automount)
● Example: corruption status flag
● Example: virtual quotas

39 / 40

Use of volume metadata
Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK
● Example: mountpoint (and allow Shufflecake to automount)
● Example: corruption status flag
● Example: virtual quotas

● To limit overcommitment and avoid corruption
● Every volume’s VMB has a virtual quota not for itself, but for

the volume below
● Topmost volume is assigned total space minus sum of

virtual quotas

39 / 40

Reclaiming unused slices

● Currently, slice assignment to a volume is permanent
● If a slice gets emptied of every logical content, it’s still marked as assigned

to its original volume
● Which is OK, but…

40 / 40

Reclaiming unused slices

● Currently, slice assignment to a volume is permanent
● If a slice gets emptied of every logical content, it’s still marked as assigned

to its original volume
● Which is OK, but…
● For increasing space efficiency, it would be nice to reassign empty slices to

the pool of available free slices.
● Tricky. Need a way to tell Shufflecake that the slice has no occupied sectors.

40 / 40

Reclaiming unused slices

● Currently, slice assignment to a volume is permanent
● If a slice gets emptied of every logical content, it’s still marked as assigned

to its original volume
● Which is OK, but…
● For increasing space efficiency, it would be nice to reassign empty slices to

the pool of available free slices.
● Tricky. Need a way to tell Shufflecake that the slice has no occupied sectors.
● Need intervention from the OS for this. TRIM operation.
● Needs to intercept OS’s TRIM operations for a given slice.
● Once we have this in place, Shufflecake design allows to do the rest easily.

40 / 40

	Slide: 1
	Slide: 3
	Slide: 4
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 6
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 13 (7)
	Slide: 13 (8)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 19
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 21 (4)
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 25
	Slide: 26 (1)
	Slide: 26 (2)
	Slide: 27
	Slide: 28
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 29 (3)
	Slide: 29 (4)
	Slide: 29 (5)
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 30 (3)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 31 (4)
	Slide: 31 (5)
	Slide: 31 (6)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 32 (3)
	Slide: 32 (4)
	Slide: 32 (5)
	Slide: 34
	Slide: 35
	Slide: 36 (1)
	Slide: 36 (2)
	Slide: 36 (3)
	Slide: 37 (1)
	Slide: 37 (2)
	Slide: 37 (3)
	Slide: 37 (4)
	Slide: 37 (5)
	Slide: 38 (1)
	Slide: 38 (2)
	Slide: 38 (3)
	Slide: 38 (4)
	Slide: 38 (5)
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 39 (3)
	Slide: 39 (4)
	Slide: 39 (5)
	Slide: 40 (1)
	Slide: 40 (2)
	Slide: 40 (3)

Shufflecake

Plausible Deniability in 2025

Tommaso Gagliardoni, Horizen Labs

From a joint work with Elia Anzuoni

Open Source Cryptography Workshop 2025

2025-03-25, Sofia, Bulgaria

Colors and Fonts

		7178cc

		82C7BC

		EDDA22

		FFA388

		Benguiat Freeway Gothic

2 / 40

Shufflecake: TL;DR

		Encrypts, hides existence of disk partitions

		Plausible deniability like TrueCrypt/VeraCrypt

		Security and usability improvements

		Cryptographic proof of security

		Faster than ORAM-based solutions

		Potential to improve security even further

		FLOSS (“free” as in “freedom”)

3 / 40

Shufflecake: TL;DR

4 / 40

Who am I

Tommaso “tomgag” Gagliardoni

		PhD in cryptography at TU Darmstadt, Germany

		Past: IBM Research, Kudelski Security

		Now: Horizen Labs, based in Zurich

		Focus on privacy, cryptography, quantum security, web3

5 / 40

Who am I

Tommaso “tomgag” Gagliardoni

		PhD in cryptography at TU Darmstadt, Germany

		Past: IBM Research, Kudelski Security

		Now: Horizen Labs, based in Zurich

		Focus on privacy, cryptography, quantum security, web3

More business

Less business

5 / 40

Overview

		TL;DR

		Bio

		Introduction

		TrueCrypt (and VeraCrypt)

		Shufflecake

		Implementation

		Future directions

		How to contribute

You are here

6 / 40

Introduction

7 / 40

Introduction

		BitLocker (Windows)

		FileVault 2 (MacOS)

		LUKS (Linux)

		...

7 / 40

Introduction

		BitLocker (Windows)

		FileVault 2 (MacOS)

		LUKS (Linux)

		...

Source: https://xkcd.com/538/

7 / 40

How bad is it?

8 / 40

How bad is it?

8 / 40

Plausible Deniability (idea)

Must hide sensitive information in undetectable way

9 / 40

Plausible Deniability (idea)

Must hide sensitive information in undetectable way

But at the same time must be “plausible”

		You have PD software installed – can’t deny existence of encryption

		“I forgot the password” – nope

		Must “give in” some decoy data and hide the rest

9 / 40

Plausible Deniability (idea)

Must hide sensitive information in undetectable way

But at the same time must be “plausible”

		You have PD software installed – can’t deny existence of encryption

		“I forgot the password” – nope

		Must “give in” some decoy data and hide the rest

Example:

		Disk is obviously encrypted

		Password 1 unlocks cat pictures

		Password 2 unlocks Panama Papers

		No way to prove that password 2 exists

9 / 40

Plausible Deniability (idea)

Must hide sensitive information in undetectable way

But at the same time must be “plausible”

		You have PD software installed – can’t deny existence of encryption

		“I forgot the password” – nope

		Must “give in” some decoy data and hide the rest

Example:

		Disk is obviously encrypted

		Password 1 unlocks cat pictures

		Password 2 unlocks Panama Papers

		No way to prove that password 2 exists

Note: different from Steganography

9 / 40

Who is this for?

		Repressed minorities in low-democracy countries

		Investigative journalists

		Whistleblowers

		Human right activists in repressive regimes

10 / 40

Plausible Deniability (formally)

		Game-based security notion, Adversary VS Challenger

		Very similar in spirit to IND-CPA

11 / 40

Plausible Deniability (formally)

		Game-based security notion, Adversary VS Challenger

		Very similar in spirit to IND-CPA

		Adversary chooses N-1 passwords

		Challenger flips random bit b

		If b=0 then initializes scheme with N-1 secret volumes

		If b=1 then samples another high entropy password and initializes scheme with N secret volumes

11 / 40

Plausible Deniability (formally)

		Game-based security notion, Adversary VS Challenger

		Very similar in spirit to IND-CPA

		Adversary chooses N-1 passwords

		Challenger flips random bit b

		If b=0 then initializes scheme with N-1 secret volumes

		If b=1 then samples another high entropy password and initializes scheme with N secret volumes

		Adversary can then submit queries to Challenger

		Each query is a pair of access patterns* i.e. read/write sequences

		Only one of the two is executed, depending on b

11 / 40

Plausible Deniability (formally)

		Game-based security notion, Adversary VS Challenger

		Very similar in spirit to IND-CPA

		Adversary chooses N-1 passwords

		Challenger flips random bit b

		If b=0 then initializes scheme with N-1 secret volumes

		If b=1 then samples another high entropy password and initializes scheme with N secret volumes

		Adversary can then submit queries to Challenger

		Each query is a pair of access patterns* i.e. read/write sequences

		Only one of the two is executed, depending on b

		Adversary can request snapshots of the disk*

		Eventually, Adversary must guess b with good advantage

11 / 40

Plausible Deniability (formally)

		Game-based security notion, Adversary VS Challenger

		Very similar in spirit to IND-CPA

		Adversary chooses N-1 passwords

		Challenger flips random bit b

		If b=0 then initializes scheme with N-1 secret volumes

		If b=1 then samples another high entropy password and initializes scheme with N secret volumes

		Adversary can then submit queries to Challenger

		Each query is a pair of access patterns* i.e. read/write sequences

		Only one of the two is executed, depending on b

		Adversary can request snapshots of the disk*

		Eventually, Adversary must guess b with good advantage

* : with certain restrictions, depending on the “flavor” of PD

11 / 40

TrueCrypt (and VeraCrypt)

TrueCrypt: one of the earliest, efficient full-disk encryption software (released 2004)

12 / 40

TrueCrypt (and VeraCrypt)

TrueCrypt: one of the earliest, efficient full-disk encryption software (released 2004)

VeraCrypt logoTroubled history, discontinued in 2014, replaced by VeraCrypt

12 / 40

TrueCrypt (and VeraCrypt)

TrueCrypt: one of the earliest, efficient full-disk encryption software (released 2004)

VeraCrypt logoTroubled history, discontinued in 2014, replaced by VeraCrypt

Empty Space

Normal (Disk Encryption) Mode

User data

12 / 40

TrueCrypt (and VeraCrypt)

TrueCrypt: one of the earliest, efficient full-disk encryption software (released 2004)

VeraCrypt logoTroubled history, discontinued in 2014, replaced by VeraCrypt

Empty Space

Empty Space (FAT16 Filesystem: Contiguous)

Hidden Volume

Plausible Deniability Mode

Normal (Disk Encryption) Mode

User data

Decoy data

12 / 40

TrueCrypt (and VeraCrypt)

TrueCrypt: one of the earliest, efficient full-disk encryption software (released 2004)

VeraCrypt logoTroubled history, discontinued in 2014, replaced by VeraCrypt

Plausible Deniability Mode

Normal (Disk Encryption) Mode

User data

Decoy data

12 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

Objections

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

Objections

		TrueCrypt is dead, we use VeraCrypt now

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

Objections

		TrueCrypt is dead, we use VeraCrypt now

Same.

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

		I still use FAT on my laptop

Objections

		TrueCrypt is dead, we use VeraCrypt now

Same.

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

		I still use FAT on my laptop

		I only use the FDE feature of VeraCrypt

Objections

		TrueCrypt is dead, we use VeraCrypt now

Same.

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

		I still use FAT on my laptop

		I only use the FDE feature of VeraCrypt

		LUKS can do plausible deniability too, you just need to fill the disc with random data, make a bootable USB drive with your bootloader on it, make a LUKS header only file on that USB drive, and then create an encrypted filesystem on the disc using that detached header file. You'll want to backup that header file, and possibly hide it with another encrypted volume using a headerless encryption on the USB drive. It's OK as long as both the USB drive and the disc stay inside the pentacle you just painted on the floor with black chicken blood.

Objections

		TrueCrypt is dead, we use VeraCrypt now

Same.

13 / 40

Problems with TrueCrypt

		Container must be FAT (NTFS with heavy limitations)

		Only 2 layers of secrecy

		Cannot use them concurrently (decoy volume read-only)

		I still use FAT on my laptop

		I only use the FDE feature of VeraCrypt

		LUKS can do plausible deniability too, you just need to fill the disc with random data, make a bootable USB drive with your bootloader on it, make a LUKS header only file on that USB drive, and then create an encrypted filesystem on the disc using that detached header file. You'll want to backup that header file, and possibly hide it with another encrypted volume using a headerless encryption on the USB drive. It's OK as long as both the USB drive and the disc stay inside the pentacle you just painted on the floor with black chicken blood.

Objections

		TrueCrypt is dead, we use VeraCrypt now

Same.

13 / 40

Shufflecake

		Native for Linux

		File-System agnostic

		Many nested layers

		Concurrent volume use

		One password to open

		GPLv2

14 / 40

Shufflecake

		Native for Linux

		File-System agnostic

		Many nested layers

		Concurrent volume use

		One password to open

		GPLv2

“or superior”

14 / 40

Shufflecake

Operating Principles

		One device = multiple volumes (with concurrency)

		1 volume = 1 password

		Volumes are numbered (from least to most secret)

		Unlocking volume N also unlocks volume N-1

15 / 40

Shufflecake

Operating Principles

		One device = multiple volumes (with concurrency)

		1 volume = 1 password

		Volumes are numbered (from least to most secret)

		Unlocking volume N also unlocks volume N-1

Cryptography

		Well-established schemes (AES, Argon2)

		Cryptographic security proof (single-snapshot)

15 / 40

Shufflecake: disk layout

Header size: 60 MiB for a 1 TB device (worst case)

16 / 40

Shufflecake: disk layout

Header size: 60 MiB for a 1 TB device (worst case)

16 / 40

Shufflecake: headers

VMK_i (Volume Master Key) decrypts VMB_i

DMB = Device Master Block VMB = Volume Master Block

17 / 40

Shufflecake: headers

VMK_i (Volume Master Key) decrypts VMB_i

VMK_(i-1) allows to decrypt all VMBs recursively

DMB = Device Master Block VMB = Volume Master Block

17 / 40

Shufflecake: implementation

device

shufflecake-userland

User space

dm-sflc

Kernel space

		Userspace can leverage more advanced crypto

		Also better for error handling, interfacing, etc

18 / 40

Shufflecake: implementation

device

shufflecake-userland

User space

dm-sflc

Kernel space

 Volume 1

 Volume 2

 Volume 3...

		Userspace can leverage more advanced crypto

		Also better for error handling, interfacing, etc

		Hidden volumes appear as /dev/mapper/sflc_X_Y

		They can be used as any other block device (formatted at wish, mounted, etc)

18 / 40

Let’s talk about multi-snapshot

Physical volume (hard disk/partition)

Decoy data

(FAT filesystem)

Empty space (?)

19 / 40

Let’s talk about multi-snapshot

“modern” solid-state drives: caching / layering / TRIM

USB ThumbdriveDecoy data

(FAT filesystem)

Decoy data

(FAT filesystem)

Decoy data

(FAT filesystem)

20 / 40

Let’s talk about multi-snapshot

“modern” solid-state drives: caching / layering / TRIM

USB ThumbdriveDecoy data

(FAT filesystem)

Decoy data

(FAT filesystem)

Decoy data

(FAT filesystem)

20 / 40

Let’s talk about multi-snapshot

“modern” solid-state drives: caching / layering / TRIM

USB ThumbdriveDecoy data

(FAT filesystem)

Decoy data

(FAT filesystem)

Decoy data

(FAT filesystem)

20 / 40

Can we do better?

		Long story short: multi-snapshot security is hard

		There are techniques to achieve it: ORAMs/woORAMs

		But they have extremely low performance

21 / 40

Can we do better?

		Long story short: multi-snapshot security is hard

		There are techniques to achieve it: ORAMs/woORAMs

		But they have extremely low performance

		Moreover, we think they overpromise

21 / 40

Can we do better?

		Long story short: multi-snapshot security is hard

		There are techniques to achieve it: ORAMs/woORAMs

		But they have extremely low performance

		Moreover, we think they overpromise

		How about practical / legal security?

		What if secure “with high enough” probability?

		What if I’m proved guilty with 2/3 probability?

21 / 40

Can we do better?

		Long story short: multi-snapshot security is hard

		There are techniques to achieve it: ORAMs/woORAMs

		But they have extremely low performance

		Moreover, we think they overpromise

		How about practical / legal security?

		What if secure “with high enough” probability?

		What if I’m proved guilty with 2/3 probability?

		How about operational security?

		Are multi-snapshot attacks realistic at all? Should we care?

21 / 40

Shufflecake “Legacy”

		Initial design of Shufflecake scheme

		Uses AES-CTR to achieve ciphertext re-randomization

		The goal is to exploit re-randomization for multi-snapshot resistance in the future (kind of a “lightweight ORAM”)

		But needs to write IVs on disk: cumbersome, corruption-prone

		NOT RECOMMENDED

22 / 40

Shufflecake “Legacy”

		Initial design of Shufflecake scheme

		Uses AES-CTR to achieve ciphertext re-randomization

		The goal is to exploit re-randomization for multi-snapshot resistance in the future (kind of a “lightweight ORAM”)

		But needs to write IVs on disk: cumbersome, corruption-prone

		NOT RECOMMENDED

		~30% slower than LUKS/VeraCrypt

		Negligible waste of space

22 / 40

Shufflecake “Lite”

Shufflecake v0.5.0 introduces “Lite” scheme

		Uses AES-XTS instead of AES-CTR (like most disk encryption tools)

		As secure as Legacy (single-snapshot)

		Natively crash consistent

		Faster

		More space efficient

23 / 40

Shufflecake “Lite”

Shufflecake v0.5.0 introduces “Lite” scheme

		Uses AES-XTS instead of AES-CTR (like most disk encryption tools)

		As secure as Legacy (single-snapshot)

		Natively crash consistent

		Faster

		More space efficient

23 / 40

Shufflecake “Lite”

Shufflecake v0.5.0 introduces “Lite” scheme

		Uses AES-XTS instead of AES-CTR (like most disk encryption tools)

		As secure as Legacy (single-snapshot)

		Natively crash consistent

		Faster

		More space efficient

Lite as default mode, but Legacy supported for backward compatibility

Paper and benchmarks coming soon...

23 / 40

Shufflecake “Full” (WIP)

Like Shufflecake “Legacy” (use of AES-CTR for ciphertext rerandomization) but with added features

		Crash consistency

		(Partial) multi-snapshot security

		“lightweight ORAM” in spirit

		Will not achieve “full” multisnapshot security

		But goal is to reach “operational” security (= “stands in court”)

24 / 40

Shufflecake “Full” (WIP)

Like Shufflecake “Legacy” (use of AES-CTR for ciphertext rerandomization) but with added features

		Crash consistency

		(Partial) multi-snapshot security

		“lightweight ORAM” in spirit

		Will not achieve “full” multisnapshot security

		But goal is to reach “operational” security (= “stands in court”)

Open question: should we bother? Or is Lite enough?

24 / 40

Future Directions

25 / 40

Chores and external contribution

Shufflecake is still an experimental, very low-level tool

		Expand testing to other Linux distros (now: Debian/Ubuntu)

		make install

		Distribute through DKMS

		Packetization (.deb, .rpm etc)

		Developer documentation

26 / 40

Chores and external contribution

Shufflecake is still an experimental, very low-level tool

		Expand testing to other Linux distros (now: Debian/Ubuntu)

		make install

		Distribute through DKMS

		Packetization (.deb, .rpm etc)

		Developer documentation

		Porting to Rust?

		GUI?

		Port to Windows/iOS?

26 / 40

Work in progress and plans

		Shufflecake “Full”

		Full crash consistency

		Corruption resistance

		(Partial) multi-snapshot security

		Use of volume metadata

		Reclaiming unused slices

		Anti-safeword: unbounded number of volumes

		Hidden Shufflecake OS

27 / 40

Work in progress and plans

		Shufflecake “Full”

		Full crash consistency

		Corruption resistance

		(Partial) multi-snapshot security

		Use of volume metadata

		Reclaiming unused slices

		Anti-safeword: unbounded number of volumes

		Hidden Shufflecake OS

28 / 40

Safeword

		Our implementation has a limit of 15 nested volumes. More than enough.

29 / 40

Safeword

		Our implementation has a limit of 15 nested volumes. More than enough.

		Really? How about 30? Or 300? would things change? How about security?

29 / 40

Safeword

		Our implementation has a limit of 15 nested volumes. More than enough.

		Really? How about 30? Or 300? would things change? How about security?

		Safeword: “I can prove to you that I do not have any other volume”

		Easy to implement on TrueCrypt: just always use a hidden volume.

		Also doable on Shufflecake.

29 / 40

Safeword

		Our implementation has a limit of 15 nested volumes. More than enough.

		Really? How about 30? Or 300? would things change? How about security?

		Safeword: “I can prove to you that I do not have any other volume”

		Easy to implement on TrueCrypt: just always use a hidden volume.

		Also doable on Shufflecake.

		Very bad for operational security.

		If you have even the possibility of implementing a safeword, the attacker will assume you have it.

		This pushes users to its adoption. This in turns ruins PD for everyone.

29 / 40

Safeword

		Our implementation has a limit of 15 nested volumes. More than enough.

		Really? How about 30? Or 300? would things change? How about security?

		Safeword: “I can prove to you that I do not have any other volume”

		Easy to implement on TrueCrypt: just always use a hidden volume.

		Also doable on Shufflecake.

		Very bad for operational security.

		If you have even the possibility of implementing a safeword, the attacker will assume you have it.

		This pushes users to its adoption. This in turns ruins PD for everyone.

		Problem understudied: it exists in all PD solutions we are aware of.

		Only fix: have an unbounded number of nested volumes.

29 / 40

Unbounded number of volumes

		Remember Shufflecake disk layout:

		This clearly cannot work.

30 / 40

Unbounded number of volumes

		Remember Shufflecake disk layout:

		This clearly cannot work.

		Idea: headers as slices at random positions

		Encrypted, indistinguishable from data slices

30 / 40

Unbounded number of volumes

		Remember Shufflecake disk layout:

		This clearly cannot work.

		Idea: headers as slices at random positions

		Encrypted, indistinguishable from data slices

		Linked list, navigation through cleartext randomness

		Position maps split into more list nodes if too large

30 / 40

Shufflecake Hidden OS

		Even if Shufflecake were 100% secure, the OS *will* leak hidden data

31 / 40

Shufflecake Hidden OS

		Even if Shufflecake were 100% secure, the OS *will* leak hidden data

User password

bootloader

OS

Shufflecake

Data

31 / 40

Shufflecake Hidden OS

		Even if Shufflecake were 100% secure, the OS *will* leak hidden data

		The only solution is to have a hidden OS: an OS booting from inside a PD container (like in TrueCrypt’s hidden Windows OS)

User password

bootloader

OS

Shufflecake

Data

bootloader

OS

Shufflecake

Data

31 / 40

Shufflecake Hidden OS

		Even if Shufflecake were 100% secure, the OS *will* leak hidden data

		The only solution is to have a hidden OS: an OS booting from inside a PD container (like in TrueCrypt’s hidden Windows OS)

		A fully hidden OS/distro powered by Shufflecake is our ultimate PD goal

User password

bootloader

OS

Shufflecake

Data

bootloader

OS

Shufflecake

Data

OS 2

Data 2

31 / 40

Shufflecake Hidden OS

		Even if Shufflecake were 100% secure, the OS *will* leak hidden data

		The only solution is to have a hidden OS: an OS booting from inside a PD container (like in TrueCrypt’s hidden Windows OS)

		A fully hidden OS/distro powered by Shufflecake is our ultimate PD goal

User password

bootloader

OS

Shufflecake

Data

		This is probably utopia.

bootloader

OS

Shufflecake

Data

OS 2

Data 2

31 / 40

Shufflecake Hidden OS

		Even if Shufflecake were 100% secure, the OS *will* leak hidden data

		The only solution is to have a hidden OS: an OS booting from inside a PD container (like in TrueCrypt’s hidden Windows OS)

		A fully hidden OS/distro powered by Shufflecake is our ultimate PD goal

User password

bootloader

OS

Shufflecake

Data

		This is probably utopia.

		We were wrong...

bootloader

OS

Shufflecake

Data

OS 2

Data 2

31 / 40

Shufflecake OS

		Important progress on the realization of a fully hidden Shufflecake distro, even a working prototype! Thanks to Anderson Ronsenberg!

32 / 40

Shufflecake OS

		Important progress on the realization of a fully hidden Shufflecake distro, even a working prototype! Thanks to Anderson Ronsenberg!

		The idea is to implement Shufflecake as a GRUB module, and let GRUB decrypt one among many encrypted /boot partitions, each one with their own kernel. Need to patch GRUB2 for this to work.

		Then kernel is loaded and boot sequence continues. Shufflecake within the booted OS would decrypt storage and mount other decoy OSes for use.

32 / 40

Shufflecake OS

		Important progress on the realization of a fully hidden Shufflecake distro, even a working prototype! Thanks to Anderson Ronsenberg!

		The idea is to implement Shufflecake as a GRUB module, and let GRUB decrypt one among many encrypted /boot partitions, each one with their own kernel. Need to patch GRUB2 for this to work.

		Then kernel is loaded and boot sequence continues. Shufflecake within the booted OS would decrypt storage and mount other decoy OSes for use.

		Long-term vision is to use a hypervisor-based OS like Qubes OS.

32 / 40

Shufflecake OS

		Important progress on the realization of a fully hidden Shufflecake distro, even a working prototype! Thanks to Anderson Ronsenberg!

		The idea is to implement Shufflecake as a GRUB module, and let GRUB decrypt one among many encrypted /boot partitions, each one with their own kernel. Need to patch GRUB2 for this to work.

		Then kernel is loaded and boot sequence continues. Shufflecake within the booted OS would decrypt storage and mount other decoy OSes for use.

		Long-term vision is to use a hypervisor-based OS like Qubes OS.

		Qubes OS’ hypervisor and dom0 would reside in Shufflecake volume 0 and be opened read-only

32 / 40

Shufflecake OS

		Important progress on the realization of a fully hidden Shufflecake distro, even a working prototype! Thanks to Anderson Ronsenberg!

		The idea is to implement Shufflecake as a GRUB module, and let GRUB decrypt one among many encrypted /boot partitions, each one with their own kernel. Need to patch GRUB2 for this to work.

		Then kernel is loaded and boot sequence continues. Shufflecake within the booted OS would decrypt storage and mount other decoy OSes for use.

		Long-term vision is to use a hypervisor-based OS like Qubes OS.

		Qubes OS’ hypervisor and dom0 would reside in Shufflecake volume 0 and be opened read-only

		All other VMs would reside in other Shufflecake volumes.

32 / 40

Shufflecake OS: The Plan

device

shufflecake-userland

User space

dm-sflc

Kernel space

 Volume 1

 Volume 2

 Volume 3...

33 / 40

Shufflecake OS: Roadmap

		 Improve testing and performance of Shufflecake Lite in progress

		 Implement Shufflecake primitives in a new library sflclib and have dm-sflc and shufflecake-userland depend on that in progress

		 Patch GRUB to support Argon2 KDF and other Shufflecake tweaks done

		 Write sflcdisk GRUB module using sflclib done

		 Patch Qubes OS to support dom0+hypervisor in read-only mode and allow flashing from another VM planned

		 Patch Qubes OS’ installer planned

34 / 40

How to contribute

		Code https://codeberg.org/shufflecake

		Mastodon @shufflecake@fosstodon.org

		Website https://shufflecake.net

		E-mail website@shufflecake.net

		Jabber xmpp:shufflecake@conference.draugr.de

		Blog: COMING SOON

Thank you for your attention!

35 / 40

Full crash consistency

		Use of AES-CTR is problematic for crash consistency

		There is a “write ciphertext – write IV” window

		Undecryptable data left on disk after crash

36 / 40

Full crash consistency

		Use of AES-CTR is problematic for crash consistency

		There is a “write ciphertext – write IV” window

		Undecryptable data left on disk after crash

Option 1

		Use a 2-circular log for IV (one old, one new)

		First update ciphertext, then update oldest IV (use HMAC to disambiguate)

		Need to make every request write-through – heavy

36 / 40

Full crash consistency

		Use of AES-CTR is problematic for crash consistency

		There is a “write ciphertext – write IV” window

		Undecryptable data left on disk after crash

Option 1

		Use a 2-circular log for IV (one old, one new)

		First update ciphertext, then update oldest IV (use HMAC to disambiguate)

		Need to make every request write-through – heavy

Option 2

		Store IV along data block and make write of block atomic

		Minimum addressable block size (on Linux): 512 bytes

		Use 9-block writes (4096 bytes data + 512 bytes IV block)

		Wastes ~11% space but faster, extra space in IV block to be used

36 / 40

(Partial) multi-snapshot security

Shufflecake is only single-snapshot secure

37 / 40

(Partial) multi-snapshot security

Shufflecake is only single-snapshot secure

		We can exploit re-randomization of AES-CTR

37 / 40

(Partial) multi-snapshot security

Shufflecake is only single-snapshot secure

		We can exploit re-randomization of AES-CTR

		Different ideas leveraging reasonable security assumptions (e.g.: how many snapshots?)

		Underlying idea: add an (orthogonal) obfuscation procedure

37 / 40

(Partial) multi-snapshot security

Shufflecake is only single-snapshot secure

		We can exploit re-randomization of AES-CTR

		Different ideas leveraging reasonable security assumptions (e.g.: how many snapshots?)

		Underlying idea: add an (orthogonal) obfuscation procedure

		Obfuscation adds extra noise to the empty space of the most secret)volume unlocked

		Extra noise makes it appear as if there is still other hidden volumes

37 / 40

(Partial) multi-snapshot security

Shufflecake is only single-snapshot secure

		We can exploit re-randomization of AES-CTR

		Different ideas leveraging reasonable security assumptions (e.g.: how many snapshots?)

		Underlying idea: add an (orthogonal) obfuscation procedure

		Obfuscation adds extra noise to the empty space of the most secret)volume unlocked

		Extra noise makes it appear as if there is still other hidden volumes

		Obfuscation can be delegated to a daemon (additional component)

		“Poor man’s ORAM” in spirit

37 / 40

Corruption resistance

		Writing data on decoy volume without unlocking all hidden volumes can cause volume corruption

		Unavoidable risk (for plausible deniability)

38 / 40

Corruption resistance

		Writing data on decoy volume without unlocking all hidden volumes can cause volume corruption

		Unavoidable risk (for plausible deniability)

		Recommended usage for user: always unlock all volumes for daily use

		Unlock less only under interrogation

		If corruption happens: recover from backup

38 / 40

Corruption resistance

		Writing data on decoy volume without unlocking all hidden volumes can cause volume corruption

		Unavoidable risk (for plausible deniability)

		Recommended usage for user: always unlock all volumes for daily use

		Unlock less only under interrogation

		If corruption happens: recover from backup

But mitigation must not be necessary perfect!

38 / 40

Corruption resistance

		Writing data on decoy volume without unlocking all hidden volumes can cause volume corruption

		Unavoidable risk (for plausible deniability)

		Recommended usage for user: always unlock all volumes for daily use

		Unlock less only under interrogation

		If corruption happens: recover from backup

But mitigation must not be necessary perfect!

		Idea: use redundancy (error-correcting codes)

		Tested with RAID (but cumbersome)

38 / 40

Corruption resistance

		Writing data on decoy volume without unlocking all hidden volumes can cause volume corruption

		Unavoidable risk (for plausible deniability)

		Recommended usage for user: always unlock all volumes for daily use

		Unlock less only under interrogation

		If corruption happens: recover from backup

But mitigation must not be necessary perfect!

		Idea: use redundancy (error-correcting codes)

		Tested with RAID (but cumbersome)

		Shufflecake reallocates corrupted slices, but recovery left to external tools

		We are implementing API to help external tools

		Open problem: how to protect not only data blocks, but also position map?

38 / 40

Use of volume metadata

Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK

39 / 40

Use of volume metadata

Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK

		Example: mountpoint (and allow Shufflecake to automount)

39 / 40

Use of volume metadata

Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK

		Example: mountpoint (and allow Shufflecake to automount)

		Example: corruption status flag

39 / 40

Use of volume metadata

Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK

		Example: mountpoint (and allow Shufflecake to automount)

		Example: corruption status flag

		Example: virtual quotas

39 / 40

Use of volume metadata

Extra space available in each VMB. We can embed metadata

Metadata is volume-specific, encrypted with that volume’s VMK

		Example: mountpoint (and allow Shufflecake to automount)

		Example: corruption status flag

		Example: virtual quotas

		To limit overcommitment and avoid corruption

		Every volume’s VMB has a virtual quota not for itself, but for the volume below

		Topmost volume is assigned total space minus sum of virtual quotas

39 / 40

Reclaiming unused slices

		Currently, slice assignment to a volume is permanent

		If a slice gets emptied of every logical content, it’s still marked as assigned to its original volume

		Which is OK, but…

40 / 40

Reclaiming unused slices

		Currently, slice assignment to a volume is permanent

		If a slice gets emptied of every logical content, it’s still marked as assigned to its original volume

		Which is OK, but…

		For increasing space efficiency, it would be nice to reassign empty slices to the pool of available free slices.

		Tricky. Need a way to tell Shufflecake that the slice has no occupied sectors.

40 / 40

Reclaiming unused slices

		Currently, slice assignment to a volume is permanent

		If a slice gets emptied of every logical content, it’s still marked as assigned to its original volume

		Which is OK, but…

		For increasing space efficiency, it would be nice to reassign empty slices to the pool of available free slices.

		Tricky. Need a way to tell Shufflecake that the slice has no occupied sectors.

		Need intervention from the OS for this. TRIM operation.

		Needs to intercept OS’s TRIM operations for a given slice.

		Once we have this in place, Shufflecake design allows to do the rest easily.

40 / 40

Shufflecake

ty in 2025

Plausible Denial

Tommaso Gagliardoni, Horizen Labs
From a joint work with Elia Anzuoni

Open Source Cryptography Workshop 2025
20250525, Sofia. Bulgara

