A Deep Dive into Marlo Heldarich, Alexandar Pirkey

| tcichenbacher Lus
the Nym M|X Ilzlsgr:ir:SiMarta onde, Nadim
Network Audit

Open Source Cryptography Workshop 2025 — Sofia,
Bulgaria

About CLM =453

* Auditing team largely based in the
EU.

e ~25 core members as of 2025.

* Probably over 1,000 audits at this
point.

* This audit was co-authored with:
* Alexander Pirker
* Daniel Bleichenbacher
* Luan Herrera

Marta Conde

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria 2

Identified Vulnerabilities
NYM-01-008 WP5: eCash vulnerable to unintended payinfo collisions (Low) o o °
NYM-01-009 WP5: BLS12-381 EC signature bypasses in Coconut library (Critical Au d It TI m e ll n e
NYM-01-014 WPS5: Partial signature bypass in offline eCash (Critical
NYM-01-016 WP2: Hard-coded “fast nodes” influence traffic distribution (Low
NYM-01-020 WP3: Replaying Sphinx packets in mixnet could facilitate DoS (Low)
NYM-01-024 WP1: Credentials and key material insecurely stored in iOS (Medium
NYM-01-027 WP3: Nonce-key reuse in AES-CTR in Nym gateways (Critical
NYM-01-030 WP3: Gateway skips credential serial number check (Critical
NYM-01-032 WP3: Bloom filter parameters yield false positives (High * July 2024: Audit conducted on:
NYM-01-033 WPS5: Signature forgery of Pointcheval-Sanders scheme (Critical o Nym C ryptogra p hIC C om pO nents
NYM-01-034 WP3: Nym network monitors have no persistent identity (Medium)
NYM-01-042 WP5: Faulty aggregation to invalid offline eCash signatures (Critical ° Nym |nfra structure
Miscellaneous Issues
NYM-01-001 WP3: Bloom filter migration to Binary Fuse filters (Low) * NymVPN Mobile & Desktop apps
NYM-01-002 WP5: Constant zero nonces in AES-CTR for Sphinx protocol (Low
NYM-01-003 WP5: Panics in Sphinx protocol due to short packets (Medium * January 2025: Audit report published
NYM-01-004 WP1: Android app supports unmaintained SDK versions (Low (at Nym’s req uest)
NYM-01-005 WPS5: No infinity point check reveals plaintext for EIGamal (High

NYM-01-006 WP5: Collisions in hash values of Coconut challenges (Low) ° Ma rch 2025 AU d|t rep orttem pO ra rlly
NYM-01-007 WP5: Verification of KappaZeta NIZKP succeeds for jur d d . d .t
NYM-01-010 WP1: Android / iOS apps lack root / jailbreak dete~* remove (pe n Ing edi S)

‘-011 WP1: Absent security screen in apps facilite’
" L ~ to lac’

<« Exit loc

ussia

Select mode (0)

» :nonymous (mixnet)

est for payments, emails, message
Fast (Wireguard)
Best for browsing, streaming, sh

@

Connect to

xit location
4 Closest (Ukraine)

About Nym

Innovative mixnet-based anonymous
VPN.

First mixnetin production.

Uses decentralized mix network to
provide anonymity (kind of similar to Tor
but with more security guarantees).

Mix nhodes volunteer and mine
cryptocurrency rewards by relaying
traffic.

New product: NymVPN (wrapper for

consumer devices).
/4

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria 4

Onion Routing vs. Mix Network

Onion Routing (Tor) Mix Networks (Nym)
* Uses layered encryption, routing * Uses “mixing”, where packets from
traffic through multiple nodes. many users are collected, reordered

- Emphasizes real-time and delayed before forwarding.

communication. * Emphasizes high-level anonymity
through statistical obfuscation,
introducing latency to defeat
stronger adversaries.

 Packets follow a fixed circuit for a
short-lived session.

* Higher latency by design.

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria 5

User

Validator Nodes

. @
| 9

NogogkwhpeE

User sends token and received credential from Validator Nodes.
User sends credential to Gateway.

Gateway relies on Validator Nodes for decentralized credential validation.

Gateway provides User access to Nym Mix Network.

Nym Mix Network allows anonymized access to Service Providers.
Service Providers keep track of user credentials via Nym blockchain.
Validators and Mix Nodes receive token rewards via Proof of Mixing.

Nym Blockchain
(Nympool)

Nym Mix Nodes

X X Gateway

- N

-~

Tokens
Data

‘% Bandwidth Credential

: : Service Providers
@ Service Credential

All kinds of signature schemes.

Anonymous credentials.

Symmetric encryption.
Many y yp

. Public k hy.
Cryptographlc ublic key cryptography
components!

Statistical access control.
Blockchains, validator nodes, etc.
Custom packet formats.

...to name a few.

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria

* Interesting cryptographic findings and
attacks.

. * Showcasing evolving types of
vulnerabilities in cutting-edge in-
T h I S Ta l k production cryptographic software in
2025.

* Not all the vulnerabilities!
e “Best-of”: 10 out of 43 issues.

let invalid = BlindedSignature (GlProjective::identity(),

NYM-01-009: BLS12-381
let invalid priv_commitments = vec![GlProjective::identity(), (]

GlProjective: :identity()];

assert! (verify partial blind signature(EC Signatu re Bypass in

¶ms,

R Coconut Library

&invalid,

validator keypair.verification key()

)) i

. _ * Coconut: “distributed cryptographic
random_scalars_refs! (public_attributesl, params, 3); R . 9
assert! (verify partial blind signature (Slgnlng SChel | |e .

¶ms,
&invalid priv_commitments,

T * Attacker is able to provide bogus

invalid, H H H .

:alidator_keypair.verification_key() C.redentlal's together Wlth Invalld
signatures to trick rewarder.

* Fix: validate signature inputs for
infinity points etc. on BLS12-381.

“We do verifications upstream in the

codebase; while it affects the Coconut
library, it doesn’t affect our stack”

fn successful verify partial blind signature infinity points() {

let invalid = BlindedSignature {
h: GlProjective::identity(),
c: GlProjective::identity(),
}i
let keys = ttp keygen(2, 3).unwrap();
let private attributes = vec![GlProjective::identity(),

GlProjective::identity()];
random scalars refs! (public attributes, ecash group parameters(),

3);

assert! (!verify partial blind signature(
&private_attributes,
&public_attributes,
ginvalid,
&keys[0] .verification_key(),

“We do verifications upstream in the
codebase; while it affects the offline

eCash library, it doesn’t affect our
stack”

NYM-01-014: Partial
Signature Bypass in Offline
eCash

* Lack of signature validation also
extended to Nym’s “offline eCash”
anonymous credentials scheme.

* Fix: validate signature inputs for
infinity points and other invalid
inputs.

NYM-01-033: Signature
Forgery of Pointcheval-

Compute the forged signature for a;=a/2, a,=a/2:

B - hash to gl((a+ a2)*Ga) Sanders Scheme

hash to gl((a/2 + a/2)*G,)
hash to_gl(a*G)) =S, = S;' = H

(1/2)%S, + (1/2)*S," = (x/2+a/2%y,) *H + (x/2+a/2%y,) *H * QOriginal Pointcheval-Sanders paper
(x+a/2%y,+a/2*y,) *H requires Hto be random for each
signing operation.

szll

* Nym (Coconut) uses the sum of
public attriburtes when deriving H.

* To forge a signature for [a/2, a/2],

attacker only needs signatures for
“Risk does not apply upstream since [a 0] Yals [O a]
J J °

Coconut and offline eCash do not
uniquely use public attributes for H” * Fix: Ensure unique H.

pub fn check bilinear pairing(p: &GlAffine, g: &G2Prepared, r: &GlAffine,
s: &G2Prepared) -> bool {

// checking e(P, Q) * e(-R, S) == id

// 1s equivalent to checking e(P, Q) == e(R, S)

// but requires only a single final exponentiation rather than two of
them

// and therefore, as seen via benchmarks.rs, is almost 50% faster

// (1.47ms vs 2.45ms, tested on R9 53%00X)

let multi miller = multi miller loop(&[(p, q), (&r.neg(), s)]):
multi miller.final exponentiation().is_identity().into()

“We do verifications upstream in the
codebase; while it affects the offline

eCash library, it doesn’t affect our
stack”

NYM-01-042: Faulty
Aggregation to Invalid Offline
eCash Signhatures

* Signature aggregation function

accepts (o0,) and (%, -), produces
(%,).

* Fix: once again, validate inputs to
prevent points at infinity, identity
points, etc.

pub fn encrypt and_ tag(
&self,
data: &[u8],
iv: Option<&lIV<GatewayEncryptionAlgorithm>>,
) —-> Vec<u8> {
let encrypted_data = match iv {
[-..]
None => {
let zero_iv =
stream cipher::zero iv::<GatewayEncryptionAlgorithm> () ;
stream_cipher::encrypt::<GatewayEncryptionAlgorithm> (
self.encryption key (),
&zero_iv,
data,

pub fn encryption key(&self) -> &CipherKey<GatewayEncryptionAlgorithm> {
&self.encryption_key

“Fixing the issue and upgrading to AES-

GCM-SIV asrecommended.”

NYM-01-027: Nonce-Key
Reuse in AES-CTR in Nym
Gateways

* Nym gateways encrypt data using
AES-CTR with a fixed nonce of O,

and a unique, non-rotating key.
* C, PC,=M; DM,

* Fix:don’t use a fixed nonce, rotate
keys, switch to authenticated AES
mode such as AES-GCM-SIV.

Vendor separation: By incorporating a unique vendorld for each vendor, the

scheme ensures that transactions from different vendors will always produce NYM_01 _008° eCash
[

different identifiers, even if the paylnfo is identical. This significantly reduces the risk

of cross-vendor collisions. .
Context-specific identifiers: The inclusion of a context parameter allows for further VU '.n e ra b l.e tO U n I nte n d ed

differentiation of transactions. This could be used to separate different types of o .

transactions, or to handle cases where the same payment information might be Payln fo COllISIOnS

used in different contexts.

Improved uniqueness: HKDF is designed to generate multiple keys from a single

input key material. It's particularly well-suited for deriving unique, cryptographically « . .

strong identifiers. ® Nym uses “offline eCash with

Better resistance to attacks: The use of HKDF makes it more difficult for an threshold issuance” to issue

attacker to manipulate or predict transaction identifiers, as they would need to know red eema b le cre d entia I.S for NymVP N

the vendorld and context in addition to the payinfo.
usage allowance.

Scalability: As the system grows and more vendors are added, the HKDF approach
continues to provide strong guarantees of uniqueness and separation between
vendors.

* H(paylnfo)is meantto generate a
unique identifier for each payment.
However, no namespacing for vendor
vs. individual-payment information.

* Fix: Derive hashes using
HKDF(vendorld, context, paylnfo)

“Acknowledged, will address in future

release”

“Will adopt fixand upgrade to Binary

Fuse Filters”

NYM-01-030: Gateway
Skips Credential Serial
Number Check

* Nym credentials have a serial
number that prevents duplicate use.

* Storing all used serial numbers
doesn’t scale.

* Bloomfilters are implemented, but
the check doesn’t actually happen.

* Fix: make the check happen.

Bloom Filter

/" hashlfinput!) —~x%ns=3,
where x is output and n is length of array

K=3Hash ' phashafinputt) —z%n=13,
Create an empty bit o(ofofofo 0|0 |0... |0 fuctions ° wherexicoupiandniiongthafamay
ith th . —r .
a"w,‘_w _E Fixed size bit array, suppose n is length IRRSRINRpUITS — ¥ % 0= B,
specified size

\._ where y is output and n is length of array

Hash each input

element using the mﬂ"ﬁiip:r:n’::jmm of array mﬂﬂf :ripiimllﬂ'nm of array :ﬁﬂ:;" :;ﬂin’:'nn::i'mm of array
hash functions
at index 3 atindex 5
1 I " atindex 13 ‘
Set corresponding
bits in the bit array to o|jo0o|0|1|0|1T|0/|0]..]1 0 0 vere | wes
1

0 1 2 K| & 5 & 7 13 14 15 n

“Will adopt fixand upgrade to Binary

Fuse Filters”

NYM-01-032: Bloom Filter
Parameters Yield False
Positives

* Bloom Filter parameters are
insufficient, would yield a1in 6
false positive rate after only 40,000
entries, or 2,000 Nym users
(roughly).

« K=13
« M=250,000

* Fix:improve parameters.

s NYM-01-032: Bloom Filter

axnnnan cuckoo: (logy (1/€) + 3)/0.955

e Parameters Yield False
Positives

—~
=
Q
=
)
=
o]
£
—
~
>
-
-
=
]
=
L
a
2]
-
ot
al

* Bloom Filter parameters are

. insufficient, would yield a1in 6

-16 -14 -12 -10 -8 oy
zeooyn o aE 22 false positive rate after only 40,000
false-positive probability .
entries, or 2,000 Nym users
Fig. 1. Theoretical memory usage for Bloom filters (optimized for space), cuckoo filters (at maximal capac-
ity [11, Table 2]), xor filters and binary fuse filters given a desired bound on the false-positive probability (ro u gh l‘y) °
from 2716 to 278, e K=13
e M=250,000

, , , * Fix: improve parameters.
“Will adopt fixand upgrade to Binary

Fuse Filters”

if (cmd === 'get fastest node location') ({ NYM-01-016: Hard-Coded

return new Promise<Country>((resolve) =>

T “Fast Nodes” Influence

name: 'France', Traffic Distribution
code: 'FR',

* NymVPN desktop client hard-coded
France as the “fastest mixnet
country” on the front-end.

» Affects traffic distribution, may
negatively impact anonymity set.

* Fix: implement dynamic, real-time
system for determining fastest
nodes based on network conditions.

“Fixed in production builds”

Ed25519 private key (in private_identity.pem):

List of files:

—_rW———————

-rw-r--r-- 1
-rw-r--r-- 1

mobile mobile 45056
mobile mobile 116
mobile mobile 118
mobile mobile 114
mobile mobile 116
mobile mobile 124
mobile mobile 49152
mobile mobile 61440

:40 credentials_database.db

:40 public identity.pem

:40 private identity.pem

:40 public_encryption.pem

:40 private encryption.pem

:40 ack_key.pem

:36 gateways_registrations.sqlite
:36 persistent reply store.sqglite

“Will be fixed in a future release”

NYM-01-024: Credentials
and Key Material Insecurely
Stored on 1I0S

* NymVPN app stored all private
credentials unencrypted on iOS
devices. Retrievable via file dump.

Fix: Use iOS Keychain APl with
AfterFirstUnlockThisDeviceOnly.

("perform_init _packet_p
packet.process (&self.sphinx_ key)

Furthermore, the excerpt below demonstrates the start of processing a new Sphinx .
packet. It is clear that the mixnet node connection handler forwards framed Sphinx NYM _0 1 _0 Zo L4 Re p layl ng
[J

packets to the processor without deduplication.

Sphinx Packets In Mixnet
ATOCIO SO 2. et somm i o e Could Facilitate DoS

can it

N * Rogue mixnet node can replay
e S S existing packets within the Nym
dttop (foruard. . mixnet.

d_packet (forward_packet, delay)

{err}™),

S * Fix: rotate Sphinx keys on a regular
’ basis, detect replayed Sphinx
packets.

).

“Will be fixed in a future release”

Nym worked on addressing
bugs, provided feedback for
report publication.

. Fixing findings from a strong
ReSOlUUOn Q audit is how products mature

from R&D to consumer-grade.

Producing reusable
components is a good thing.

22

7

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria

IELCEWEVS

More complex
cryptography software is
seeing largely old bugs
in new constructions.

AES-CTR nonce reuse:
ancient vulnerability.

Validation in esoteric
sighature schemes: old
vulnerability in a
different primitive.

Anonymous credentials,
custom packet formats:
actual new stuff.

=l

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria 23

* Cureb3: https://cure53.de

* Personal: https://nadim.computer

Thank you!

With thanks to my teammates:
* Alexander Pirker

* Daniel Bleichenbacher
 Luan Herrera

 Marta Conde

Open Source Cryptography Workshop 2025 — Sofia, Bulgaria 24

https://cure53.de/
https://nadim.computer/

	Slide 1: A Deep Dive into the Nym Mix Network Audit
	Slide 2: About
	Slide 3: Audit Timeline
	Slide 4: About Nym
	Slide 5: Onion Routing vs. Mix Network
	Slide 6
	Slide 7: Many cryptographic components!
	Slide 8: This Talk
	Slide 9: NYM-01-009: BLS12-381 EC Signature Bypass in Coconut Library
	Slide 10: NYM-01-014: Partial Signature Bypass in Offline eCash
	Slide 11: NYM-01-033: Signature Forgery of Pointcheval-Sanders Scheme
	Slide 12: NYM-01-042: Faulty Aggregation to Invalid Offline eCash Signatures
	Slide 13: NYM-01-027: Nonce-Key Reuse in AES-CTR in Nym Gateways
	Slide 14: NYM-01-008: eCash Vulnerable to Unintended PayInfo Collisions
	Slide 15: NYM-01-030: Gateway Skips Credential Serial Number Check
	Slide 16
	Slide 17: NYM-01-032: Bloom Filter Parameters Yield False Positives
	Slide 18: NYM-01-032: Bloom Filter Parameters Yield False Positives
	Slide 19: NYM-01-016: Hard-Coded “Fast Nodes” Influence Traffic Distribution
	Slide 20: NYM-01-024: Credentials and Key Material Insecurely Stored on iOS
	Slide 21: NYM-01-020: Replaying Sphinx Packets In Mixnet Could Facilitate DoS
	Slide 22: Resolution
	Slide 23: Takeaways
	Slide 24: Thank you!

