
Closed Source Cryptography

Lukas Zobernig

25 March 2025



Intro

I Open Source Cryptography Workshop?

I Let’s talk about closed source cryptography then.

I Where? Virtually all proprietary systems.

I Why? Corporate red tape, paranoia, security through obscurity, DRM, IP, etc.

I What? Lots and lots of “homegrown” cryptography. Amazing.



Reverse Engineering

How does one look at closed source cryptography?

I Primarily through reverse engineering — a spectrum of difficulty.

I JavaScript — easy.

I Compiled Java/.NET — easy.

I Compiled C/C++/Rust/etc. — trickier (decompilers can help).

I Synthesised IP (hardware) — difficult (need expensive lab setup).

Many mistakes reoccur (for and between vendors). Often we can guess what could go
wrong once we built a good library of mistakes. We will see examples of that.



Sony/IBM/Toshiba - Playstation 3

I First released in 2006 (JP, NA) and 2007 (EU).

I GPU by Nvidia, CPU co-developed by Sony, Toshiba, and IBM.
I Cell Broadband Engine Architecture (CELL/B.E.) CPU.

I PPC main cores.
I SPU accelerator/compute cores.
I Secure Boot (boots from isolated SPU).

I Lots and lots of custom Sony DRM.

I Security through obscurity.

I “Custom” cryptography.



Reverse Engineering - PS3

I IBM released public versions of the CELL/B.E. manuals.

I Sony provided a mechanism to run Linux on the PS3, we can look at drivers.

I The CPU was also used in super-computing applications, SPU instruction set
publicly documented.

I Can develop tooling like disassemblers and emulators.



Reverse Engineering - SPU

I Tricky since there was no
decompiler for the SPU
architecture.

I This was also long before
Ghidra was published, so one
would have had to develop
their own.

I Thus, reverse engineering by
hand.



Reverse Engineering Cryptography Algorithms

There are a few tricks.

I Most often standard algorithms implemented.

I AES, SHAx, HMAC, ECC, RSA, etc. all use characteristic constants.

I Ciphers and hashes have different algorithmic structure than signatures or key
exchange.

I Often high-entropy data (keys, IVs, ) referenced through inputs.



Reverse Engineering - SPU



Reverse Engineering - SPU



Reverse Engineering - SPU



Reverse Engineering - SPU



Reverse Engineering - SPU

And of course sometimes you get lucky and developers forget to strip symbols.



Reverse Engineering - SPU



PS3 DRM - ECDSA Signatures

ECDSA signing in a nutshell:

I Given elliptic curve E , point G ∈ E of order n, signer private key k ∈ [1, n − 1].
I For signing a message m:

I Sample random t ∈ [1, n − 1],
I compute (x , y) = tG ,
I compute r = x mod n
I compute s = t−1(H(m) + rk) mod n,
I output (r , s) as the signature.

What did Sony do? Keep t fixed.

I For different m,m′ we then have signatures (r , s) and (r , s ′), respectively.

I Solve for t = (s − s ′)−1(H(m)− H(m′)) mod n.

I Solve for private key k = r−1(st − H(m)) mod n.



Nintendo - DS/DSi/3DS

I DS first released in 2004, DSi in 2008, and 3DS in 2011.

I Mostly custom designed hardware by Nintendo Research & Engineering.

I Lots and lots of custom Nintendo DRM.

I Security through obscurity.

I “Custom” cryptography.



Nintendo - DS/DSi/3DS

I These use a hardware AES engine for encryption/decryption of sensitive data.

I Keys are written to keyslots by secure boot stages, keyslots are write-only.
I Some keyslots are flushed by the hardware AES engine whenever any part of the

key is written to.
I Encrypt some plaintext M, and record corresponding ciphertext C∗.
I Overwrite one byte of the key with b ∈ [0, 255], encrypt same M to obtain Cb.
I Compare C∗ with Cb, if they match we discovered one byte of the key.
I Otherwise, chose different b ∈ [0, 255], repeat until all bytes known.



Nintendo - DS/DSi/3DS

I Other keyslots are derived from a hardware key scrambler Ki = F (Xi ,Yi ) for
inputs slots Xi , Yi , and some “secret” function F .

I Encrypting a chosen plaintext for carefully chosen X ,Y pairs recovers
F (X ,Y ) = (((X ≪ 2)⊕ Y ) + C ) ≪ 87, for some constant C .

I A SAT solver can find a solution to such a system quickly.

I This was also used to recover secret Xi values set by the bootrom, some keys Ki

did leak from another device (used for interoperability).



Nintendo/Nvidia - Switch

I First released in 2017.
I SoC (CPU & GPU) by Nvidia.

I ARM main CPU cores.
I Secure Boot from BPMP (Boot and Power Management Processor).
I ARM TrustZone runs tiny “hypervisor” mostly responsible for cryptography.

I Lots and lots of custom Nintendo DRM.

I Security through obscurity.

I “Custom” cryptography.



Nintendo/Nvidia - Switch

I SoC contains hardware AES engine for encryption/decryption.

I Keys are written to keyslots by secure boot stages, keyslots are write-only.

I Keyslots are flushed by the hardware AES engine whenever any word (32bit) of
the key is written.

We have already seen this problem earlier. Partial key overwrites is a flaw many
hardware crypto engines have.



Nvidia - TSEC

I Nvidia makes graphics cards.

I These cards need to talk HDCP (i.e. HDMI DRM).

I TSEC is a security co-processor handling cryptography.

I It supports secure boot for programs that can access sensitive hardware keys.

I To load such a program, one needs to write a signature to a hardware register
before jumping to the program.

I The signature is essentially a Davies-Meyer hash of the input program.

I The signature is computed into another hardware register, but not cleared on
verification failure.



Outro

I All of the points and bugs mentioned can be found documented in various places
on the internet.

I We have glossed over many details, please go read up on them.

I Try to keep cryptography open and documented, hackers will figure it out in any
case.

I Questions?


