
OpenMLS

A guided tour

OSCW 2024



Messaging Layer Security:
An Overview



Overview

- Group messaging and group key agreement protocol

- Asynchronous (requires pre-published key material)

- Dynamic groups (add/remove/update)

- Proposal/Commit paradigm

- Requires total order of (Commit) messages

- Abstract over KEMs and Signatures



Pre-published Key Material

- Clients pre-publish KeyPackages
- Allows asynchronous group additions

- KeyPackages advertise a client’s capabilities (supported 

versions, ciphersuites, etc.)

- Contains the owner’s Credential and Signature Public Key



MLS Message Format

- MLS messages are wrapped in the MLSMessage struct

- An MLSMessage can contain
- PublicMessage (Commit or Proposal)

- PrivateMessage (Commit, Proposal or ApplicationMessage)

- Welcome

- GroupInfo

- KeyPackage

- Proposals and Commits can be sent encrypted or in the 

clear



MLS Group Operations

- Both group members and non-members (e.g. a server) can 
propose group operations (e.g. add/remove) via (cheap) 
Proposals

- Group members can enact a set of Proposals by creating a 
(more expensive) Commit

- Each Commit introduces a new Epoch

Motivation for Proposal/Commit paradigm:

- Allows involvement of non-members
- Computationally weaker group members can avoid more 

expensive commit operations



Agreement on order of Commits

- The (abstract) Delivery Service (DS) needs to order commit 

messages

- A DS can be strongly consistent or eventually consistent
- Strongly consistent: E.g. a central server choosing a commit per 

epoch. Prevents forks.

- Eventually consistent: E.g. a distributed system, where clients agree 

on message order via a separate algorithm

- MLS can be made more fork-resilient (an extension is under way)



Adding and Joining Group Members

- Invitation flow: Group Members can be added 

asynchronously (via KeyPackages)

- Join flow: Group Members can join a group instantly (if 

they have the required GroupInfo)1

- Applications can disallow such instant joins

1: Also called “external commit”, “external init” or “external join”



(TLS-like) Exporter and Pre-shared 
keys

- An MLS group can export key material on a per-epoch 

basis

- Exporters can be used in other applications/protocols

- Key material can be injected into the group
- e.g. for channel binding, authentication purposes or improved 

entropy



Group State Agreement

- MLS groups can be used to ensure that members agree 

on arbitrary data

- Custom Proposals can be used to coordinate non-MLS 

operations

- Strict message ordering helps solve general problems 

with distributed state (group-wide mutex)



Questions?



OpenMLS



General State

- Fully implements RFC 9420

- Version 0.5 on crates.io

- State serialization currently under development

- Working on stabilizing public API

- A number of pending changes on main



Pluggable Providers via Traits

- RNG

- Crypto provider
- Covers cryptographic operations

- Ciphersuite support depends on provider

- Currently available: libcrux, RustCrypto

- Storage provider
- Can store various OpenMLS data types

- Group state

- KeyPackages

- Private key material



Type-based Verification

- Input types with -In suffix (e.g. MlsMessageIn)

- Suffix removed after verification

- Output types with -Out suffix (e.g. MlsMessageOut)

- Only input types can be de-serialized

- Enforces verification within OpenMLS

- This can lead to duplicated code (we’re working on it)



Main API: MlsGroup

- Represents an MLS group

- Can be serialized and store through storage provider

- Contains a Proposal store

- Follows a stage-and-merge flow for commits
- Commits are first staged (by processing them)

- After inspection, staged commits can be merged

- Outputs MLSMessage structs (can be serialized)



Playground

- Repo with playground app: 

https://github.com/openmls/oscw24

- Functional DS at https://ds.openmls.tech

- Let us know if you have any questions or run into 

problems

- Issues and PRs welcome!

https://github.com/openmls/oscw24
https://ds.openmls.tech

