s




Implementing X.509 path
validation for Python

William Woodruff, Trail of Bits



Introduction

Hello!

e William Woodruff (william@trailofbits.com)
o open source group engineering director @ trail of bits
o long-term OSS contributor (Homebrew, LLVM, Python)
and maintainer (pip-audit, sigstore-python)
o @yossarian@infosec.exchange

e Trail of Bits
o ~130 person R&D firm, NYC based
o specialities: cryptography, compilers, program analysis
research, “supply chain”, OSS package management,
general high assurance software development

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

&


mailto:william@trailofbits.com
https://infosec.exchange/@yossarian

Agenda

e Quick recap/background/mode-set on X.509 and path validation
e Path validation for Python

o  Pre-existing efforts and implementations
o Designing a new implementation from scratch
o  Our implementation

e Testing the bejeezus out of it

o x509-limbo
o  Testing our implementations and others
o Bugs everywhere

e Lessons learned & future work

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

&



Thank-yous

e This work was funded by the Sovereign Tech Fund
o  Themselves funded by ™ via SPRIN-D

e PyCA maintainers (Paul Kehrer and Alex Gaynor) defined the bounds of
our approach, answered questions, and reviewed (and fixed) our

changes throughout ~9 months of development
o  x509-limbo is their idea, we just built it for them

e Filippo Valsorda inspired the testvector design (at RWC 2023) and
allowed us to home x509-limbo under C2SP

e Andrew Pan, Facundo Tuesca, Alex Cameron all designed, discussed,
and engineered components of the implementation or tests

danetrain commented on Sep -

Currently, cryptography contains no functionality to validate a certificate chain against a trusted root certificate. This is a
fairly standard operation; it is described in detail by RFC 5280. | would like to implement this by adding a x509Validator

interface to the cryptography.x509 module.

a6 s




Banner items

e Python Cryptography now has X.509 path validation APIs!
o  Work right out of the box with pip install cryptography!
o  Written in Rust, bound to Python with PyO3!
o ~2500 new lines of code total
o No OpenSSL*!

e X.509 validation is scary, so we tested the crap out of it!
o  x509-limbo: a new testsuite for path validation implementations!

o  We want you (other implementations) to integrate it into your tests!
o It's already found bugs/discrepancies in other implementations!

openssl-1.1 V] unhandled critical extension
openssl-3.1.5 V' unhandled critical extension
gocryptox509- X (unexpected validation: chain built
go1.22.0 success)

rust-webpki (V] trusted certs: trust anchor extraction failed


https://x509-limbo.com/

cryptography.x509 Certificate, DNSName, load_pem_x509_certificates
cryptography.x509.verification PolicyBuilder, Store

certifi
datetime datetime

open(certifi.where(), "rb") pems:
store = Store(load_pem_x509_certificates(pems.read()))

builder = PolicyBuilder().store(store)
builder builder.time(verification_time)

verifier = builder.build_server_verifier(DNSName("“cryptography.io"))
chain = verifier.verify(peer, untrusted_intermediates)




X.009 Is..

e ..apublic key conveyance format

o  “Public key @xblahblahblah is bound to subject freestuff.example.com’

o Metadata includes expiration, machine & human-readable policy, expected usage, etc.
e (pubkey, metadata) is signed over by a private key

o Usually a different private key than the signed-over pubkey's private half!

X509v3 extensions:
X509v3 Key Usage: critical

Digital Signature, Key Encipherment
X509v3 Extended Key Usage: (:C)rr]rT]()r1
TLS Web Server Authentication, TLS Web Client Authentication r]E!rr]Ee

X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:

79:EF:1A:7B:B3:FB:A5:2C:B3:B1:91:5C:41:44:00:E9:79:4A:E1:3B
X509v3 Authority Key Identifier:

14:2E:B3:17:B7:58:56:CB:AE:50:09:40:E6:1F:AF:9D:8B:14:C2:C6
Authority Information Access:

OCSP - URI:http://r3.o.lencr.org

CA Issuers - URI:http://r3.i.lencr.org/
X509v3 Subject Alternative Name:

DNS :www.x509-1imbo.com, DNS:x509-1limbo.com

distinguished
name

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Py



X.509 Is..

e .. achaining primitive:
o  Certificate A can sign for Certificate B by conveying pubkey,

e ..notaone-way key «—— cert mapping
o Asingle CA can have multiple keypairs, each with its own certificate

m ..for rotation, fall over, or “just because” reasons
o Asingle keypair can have multiple certificates!
m ..for policy reasons (e.g. expiry renewal without key rotation)
m ..for cross-issuance purposes (e.g. a CA certificate signed by a different CA)

| Subject: DST Root CA X3 /\
Issuer: ... self signed

signs for

ISRG Root X1

Subject: ISRG Root X1 [\ | Subject: ISRG Root X1
Issuer: ISRG Root X1 self signed Issuer: DST Root CA X3

Open Source Cryptogra

&



X.509 is..

e ..aprotocol for securely introducing

principals to each other:

o  Chaining allows us to go from a set of locally
trusted entities (the OS/language trust store) to a
remotely untrusted entity that we know (e.g. by
DNS name) but don't previously trust

o And vice versa, for mutual authentication (“client”
auth in TLS land)

e Principals can be introduced through

untrusted intermediates!

o example.com can be securely connected to
regardless of how many intermediate certs it
sends, so long as the final chain construction is
shaped like:

[example.com, .., untrusted, trusted]

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 10



x509-limbo.com DST Root CA X3

ISRG Root X1




X.509 is..

e ..acomplete dumpster fire of an ecosystem
e 75% of the world runs on OpenSSL and forks (Libre, Boring)

@)
O
O

Forks are often better but severely constrained by API/ABI compatibility
OpenSSL's X.509 implementation is half RFC 3280/5280, half &

The other 25% is OS implementations, mbedTLS, WolfSSL, GnuTLS, vendor crap,
mystery meat, etc.

A bunch of this stuff runs on middleboxes and appliances that are deployed and
promptly forgotten about

e ..aplayground for exploitable logic and memory safety bugs

(@)
(@)

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Geometric combination of ASN.1/DER parsing bugs and X.509 protocol/policy errors

Severity ranges from remote triggerable DoS (moderately bad) to false positive

verification (very bad) to remote disclosure of process memory (very, very bad)

Some of these bugs are baked into the specs themselves!
m CVE-2023-0464, CVE-2023-23524




X.509 validation in Python

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python



X.509 In Python: status quo

e Standard library provides ss1, which is a relatively thin wrapper
over OpenSSL
o Boring/LibreSSL can be used, but not officially supported
upstream
o Tied closely to the socket API; hard to reuse outside of TLS
o Very lightly maintained (nobody wants to deal with OpenSSL)
e Third-party libraries are (typically) wrappers over OpenSSL or
platform APIs and are easy to misuse
o pyOpenSSL (OpenSSL via CFFI), M2Crypto (OpenSSL via SWIG)
o Exception: certvalidator is pure Python, pulls from OS APIs
via FFl
m  With a generic API!

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 14 E



X.509 In Python: design constraints

e Baseline: TLS certificate validation, consistent with CABF
o  Meaning: DNS/IP names + constraints, RFC 5280 + 6125, some additional stuff on top
e Explicitly excluded:
o  X.509v1, RFC 3280 and earlier profiles
o  CRLs, OCSP, AlIA chasing, Certificate Transparency
o  Policy Constraints/Mapping
e Needs to fully exist within PyCA Cryptography
o Only Python and (mostly) dep-free Rust
m  Absolutely no unsafe Rust
pip install cryptography must continue to work on all supported platforms
100% test coverage + correctness over known problematic chains
Maintainers are speed freaks

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python




X.509 In Python: design principles

On top of everything, follow Sleevi's laws:

e Thereis no one true chain
e Treat path building as an abstract DFS problem
o With changing constraints (e.g. accumulated Name Constraints)
e Allrejections must be encoded into the search itself
o Rejecting a chain after it's built means potentially leaving other chains undiscovered
e “Know your limits”

o Don't allow arbitrarily deep chains, excessive name/policy comparisons, or anything else that
would not appear in a real PKI

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 16


https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6

X.509 In Python: implementation details

90% of the implementation is Rust, 10% is Python
Rust:

e Trust store, policy, key/SAN/NC parsing, core path building
e PyO03types that get exposed to Python (but are themselves Rust)

Python:

e PolicyBuilder, misc. smalltypes and type aliases

e Pre-existing cryptography.x509 APIs for certs, extensions, names, etc.

Where is the actual cryptography????

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python


https://pyo3.rs/

pub struct VerificationCertificate<'a, B: CryptoOps> {
cert: Certificate<'a>,
public_key: once_cell::sync::0nceCell<B: :Key>,
extra: B::CertificateExtra,

pub trait CryptoOps {
/// A public key type for this cryptographic backend.
type Key;

/// An error type for this cryptographic backend.
type Err;

/// Extra data that's passed around with the certificate.
type CertificateExtra: Clone;

/// Extracts the public key from the given “Certificate™ in

/// a “Key  format known by the cryptographic backend, or “None’

/// if the key is malformed.

fn public_key(&self, cert: &Certificate<'_>) —> Result<Self::Key, Self::Err>;

/// Verifies the signature on "Certificate’ using the given
/// “Key .
fn verify_signed_by(&self, cert: &Certificate<'_>, key: &Self::Key) —> Result<(), Self::Err>;




pub(crate) struct PyCryptoOps {}

impl CryptoOps for PyCryptoOps {
type Key = pyo3::Py<pyo3::PyAny>;
type Err = CryptographyError;
type CertificateExtra = pyo3::Py<PyCertificate>;

fn public_key(&self, cert: &Certificate<'_>) —> Result<Self::Key, Self::Err> {
pyo3::Python::with_gil(|py| —> Result<Self::Key, Self::Err> {
keys::load_der_public_key_bytes(py, cert.tbs_cert.spki.tlv().full_data())
})

fn verify_signed_by(&self, cert: &Certificate<'_>, key: &Self::Key) —> Result<(), Self::Err> {
pyo3::Python::with_gil(|py| —> CryptographyResult<()> {
sign::verify_signature_with_signature_algorithm(
Py,
key.as_ref(py),
&cert.signature_alg,

cert.signature.as_bytes(),
&asnl::write_single(&cert.tbs_cert)?,




pub(crate) fn verify_signature_with_signature_algorithm<'p>(
py: pyo3::Python<'p>,
issuer_public_key: &'p pyo3::PyAny,
signature_algorithm: &common::AlgorithmIdentifier<' >,
signature: &[u8],
data: &[u8],
) => CryptographyResult<()> {
let key_type = identify public_key_type(py, issuer_public_key)?;
let sig_key_type = identify_key_type_for_algorithm_params(&signature_algorithm.params)?;
if key_type != sig_key_type {
return Err(CryptographyError::from(
pyo3::exceptions::PyValueError::new_err(
"Signature algorithm does not match issuer key type",
),
));
}
let py_signature_algorithm_parameters =
identify_signature_algorithm_parameters(py, signature_algorithm)?;
let py_signature_hash_algorithm = identify_signature_hash_algorithm(py, signature_algorithm)?;
match key_type {
KeyType: :Ed25519 | KeyType::Ed448 => {
issuer_public_key.call_methodl(pyo3::intern!(py, "verify"), (signature, data))?
}
KeyType::Ec => issuer_public_key.call_methodl(
pyo3::intern!(py, "verify"),

(signature, data, py_signature_algorithm_parameters),

)?'




@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,

signature_algorithm: EllipticCurveSignatureAlgorithm,
) —> None:

Verifies the signature of the data.

EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
EllipticCurvePublicKey.register(rust_openssl.ec.ECPublicKey)




fn verify(
&self,
py: pyo3::Python<'_>,

signature: CffiBuf<'_>,
data: CffiBuf<'_>,
signature_algorithm: &pyo3::PyAny,
) -> CryptographyResult<()> {
if !signature_algorithm.is_instance(types::ECDSA.get(py)?)? {

return Err(CryptographyError::from(
exceptions: :UnsupportedAlgorithm: :new_err((
"Unsupported elliptic curve signature algorithm",
exceptions: :Reasons: :UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
)),
));

let (data, _) = utils::calculate_digest_and_algorithm(
PY,
data.as_bytes(),
signature_algorithm.getattr(pyo3::intern!(py, "algorithm"))?,
)?;

let mut verifier = openssl::pkey_ctx::PkeyCtx::new(&self.pkey)?;
verifier.verify_init()?;
let valid = verifier.verify(data, signature.as_bytes()).unwrap_or(false);
if lvalid {
return Err(CryptographyError::from(
exceptions::InvalidSignature::new_err(()),
));




struct evp_pkey_ctx_st {
/* Actual operation */

int operation;

/*
« Library context, property q
 this context
*/
OSSL_LIB_CTX *libctx;
char *propquery;
const char xkeytype;
/* If |pkey| below is set, thi
EVP_KEYMGMT xkeymgmt;

union {
struct {
void *genctx;

} keymgmt;

struct {
EVP_KEYEXCH *exchange;
* Opaque ctx returned
*x implementation 0SSL
%/
void *algctx;
} kex;

uery, keytype and keymgmt associated with

s field is always a reference to its keymgmt

from a providers exchange algorithm

_FUNC_keyexch_newctx()

*/




OpenSSL (or ilk) still provides the crypto itself

e Carefully nestled behind abstractions, but still there in the shadows...
o  Accessed through rust-openssl for invariant preservation
o Abstractions mean that it could be removed, some day

e But nothing else!

o  X.509 parsing = pure Rust!
o Chain building + profile/policy conformance = pure Rust!!
o  SPKI parsing/key extraction = pure Rust!!!

<Alex_Gaynor> Replaced OpenSSL's public key parser with our own pure rust one (that constructs OpenSSL key
types). This made _certificate path building_ 60% faster. It didn't make key parsing 60% faster. It made

CERTIFICATE PATH BUILDING 60% FASTER.




Testing

Open Source Cryptography Workshop 2024

Implementing X.509 Path Validation for Python

25

&



Testing: requirements

e We can do alot with unit tests in Rust and Python, but not enough
o Remember: 100% coverage requirement!
o Cryptography ops/backend abstraction means that anything after sig verification
needs to be in Python
o PyO3and cargo test don't always play nicely

e Need away to reach edge cases and annoying/pathological states

within the validator
o Possibly gated on extensions, criticality, current NC set, etc.
o In effect, we need a framework for rapidly churning out graphs/chains that contain
each behavior under evaluation

yossarian (1.3.6.1.4.1.55738) 5:00 PM
yep, this is an insane type overlap thing; they're both <class

ntifier'

pe) varies between them

i.e. the type object itself, not the instance id
Alex Gaynor & 501 PM
' Cool. Sounds fucked

Please keep this evil out of our codebase. tia



Testing: x509-limbo

e X.509 path validation testcases are inherently reusable, lots of prior art:
o BetterTLS (Netflix)
o  x509test (Google)
o PITTv1/2/3, NIST PKITS, etc.
o Each has a bespoke testcase/vector format, we want to unify them and add our own
tests!
e x509-limbo is our testsuite + testvector format
o Each testcase is (roots, intermediates, leaves, expected-result, extra-constraints)
o Compiled to a giant blob of JSON
o Contains both 3p tests (BetterTLS) and our own artisanal tests
o Grouped into namespaces, e.g. webpki: :nc: :* for NC handling under the CABF
profile

&

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 27



@testcase
def forbidden pl92 root(builder: Builder) -> None:

Produces the following **invalid** chain:

The root cert conveys a P-192 key and signs for the EE with it,

which is not permitted under the CABF's key or signature types.

AAAANAAANAN

root key = ec.generate private key(ec.SECP192R1())

root builder.root ca(key=root key)

leaf builder.leaf cert(root)

builder = builder.server validation()
builder.trusted certs(root).peer certificate(leaf).expected peer name(
PeerName (kind="DNS", value="example.com")

) .fails ()




"id": "webpki::forbidden-pl92-root”,
“conflicts with": [],
"features": [],
"description": "Produces the following **invalid** chain:\n\n " "\nroot -> EE\n/
"validation kind": "SERVER",
"trusted certs": |
BEGIN CERTIFICATE

"untrusted intermediates": [],
"peer certificate":
"peer certificate key":

"validation time": null,

"signature_algorithms":

"key usage": [],
"extended key usage": [],
"expected result": "FAILURE",
"expected peer name": {
"kind": "DNS",
"value": "example.com"
b
"expected peer names": [],

"max _chain_depth": null




pathological:nc-dos-1

Produces the following pathological chain

Testing: x509-limbo e

The root CA contains 2048 permits and excludes name constraints, which are checked against
the EE's 2048 SANs and 2048 subjects. This is typically rejected by implementations due to
quadratic blowup, but is technically valid.

. We Wa nt other implementations This testcase is extended from OpenSSl's (many-names1.pem, many-constraints.pem)
(Go' Openss L’ etc.) to integrate testcase, via https://github.com/openssi/openssi/pull/4393.
x509-limbo into their testsuites! o [

e Created our own basic harnesses

for each as reference
e Found/surfaced a bunch of bugs s -
in the process
o False verifications, incorrect failures o L o
(rejecting chains that should be . ———
accepted) pstaens @
o  Lots of Name Constraint bugs u

o Memory corruption: CVE-2024-28835: T —_
OOB caused by long cert chain in
GnUTLS openssl-1.1 v} unspecified certificate verification error

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation fc


https://gitlab.com/gnutls/gnutls/-/issues/1525

Lessons learned & future work

Open Source Cryptography Workshop 2024 Implementing X.509 Path Validation for Python



| essons learned

RFCs and CABF say one thing, implementations do another

e CABF says to prefer SAN always; many implementations check Subject
or both

e Manyimplementations don't bother with SN checks
o  Guessable/fixed serials were what made Flame (2008) possible!
e Mostimplementations have at least one NC bug, causing false

negatives
o  Typically in cross-issuance/self-issuance graphs

e Mostimplementations handle self-issued cert pathlens incorrectly
e Manyimplementations ignore/don’t enforce presence of SKI/AKI

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 32



| essons learned

X.509 has plenty of quirks to lawyer over

e Negative 20-octet serial numbers that are really 21 octets when DER

encoded, valid or not?
e 0.999.. '= 1accordingto RFC 5280
e "“Root” certs are alie, only “trust anchors” exist
o Unless you're in CABF, in which case trust anchors are a lie and only roots exist
e Unclear whether conveying a TA as a certificate means respecting its
exts/constraints

o  PyCA respects constraints on roots, other impls (notably rustls) do not
o ..butsome browsers do? Some of the time?

e Unclear whether the leaf’s pubkey is subject to CABF constraints

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 33



| essons learned

Despite complexity and ambiguity, things are Pretty Good™:

e The Web PKlis in much better shape in 2024 than 2014, thanks to CABF,

shorter validities, Certificate Transparency, and higher expectations
o No more secretly issued intermediate CAs, no more toothless audit failures
o No more BER or malformed DER roots, no more V1 roots
o Only a small handful of invalid serials left

e Hardest part was determining and testing PyCA's “break budget” vs.
other implementations, not the actual code itself
o  Core path building is <400 lines of well-commented Rust

e Some bugs still snuck through!

o  Root key strength check bug, unknown NC handling bug, datetime object TZ bug, ...
o  Each got a new x509-limbo case, revealing bugs in other impls too!

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 34

&



Future work

e Only TLS server cert validation is implemented

o  TLS client cert validation seer™: https://github.com/pyca/cryptography/pull/10345
m  Merged, but notin a release yet

e Other profiles? More configuration knobs?
o Intel SGX, Authenticode, etc.
o  Users want even more control over which key/signature algorithms are allowed
m  Sometimes users want bad things
o  Guiding principle: future knobs/config points must not make the current APIs harder to
use/easier to misuse

e Spread the gospel of x609-limbo

o  Get more implementations to adopt it upstream
o  Cannibalize more related test suites
o  Support profiles other than RFC 5280 and CABF

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python 35

&


https://github.com/pyca/cryptography/pull/10345

Thank youl!

Slides will be available here:

https://yossarian.net/publications#oscw-2024

Resources:

e ToB blog: We build X.509 chains so you don't have to
Ryan Sleevi: Path Building vs Path Verifying: The Chain of Pain

e Andrew Ayer: Fixing the Breakage from the AddTrust External CA Root
Expiration
e Robert Alexander: Name "Constrain't" on Chrome

e Many specs:
o  RFC 5280 (X.509 PKIX)
o REC 6125 (domain-based identities, wildcards in PKIX)
o CABFBRs

Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python


https://yossarian.net/publications#oscw-2024
https://blog.trailofbits.com/2024/01/25/we-build-x-509-chains-so-you-dont-have-to/
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://www.agwa.name/blog/post/fixing_the_addtrust_root_expiration
https://www.agwa.name/blog/post/fixing_the_addtrust_root_expiration
https://alexsci.com/blog/name-non-constraint/
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://cabforum.org/working-groups/server/baseline-requirements/documents/

