
1Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

2Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Implementing X.509 path
validation for Python
William Woodruff, Trail of Bits

3Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

● William Woodruff (william@trailofbits.com)
○ open source group engineering director @ trail of bits
○ long-term OSS contributor (Homebrew, LLVM, Python)

and maintainer (pip-audit, sigstore-python)
○ @yossarian@infosec.exchange

● Trail of Bits
○ ~130 person R&D firm, NYC based
○ specialities: cryptography, compilers, program analysis

research, “supply chain”, OSS package management,
general high assurance software development

Hello!
Introduction

mailto:william@trailofbits.com
https://infosec.exchange/@yossarian

4Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Agenda
● Quick recap/background/mode-set on X.509 and path validation
● Path validation for Python

○ Pre-existing efforts and implementations
○ Designing a new implementation from scratch
○ Our implementation

● Testing the bejeezus out of it
○ x509-limbo
○ Testing our implementations and others
○ Bugs everywhere

● Lessons learned & future work

5Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Thank-yous
● This work was funded by the Sovereign Tech Fund

○ Themselves funded by via SPRIN-D
● PyCA maintainers (Paul Kehrer and Alex Gaynor) defined the bounds of

our approach, answered questions, and reviewed (and fixed) our
changes throughout ~9 months of development
○ x509-limbo is their idea, we just built it for them

● Filippo Valsorda inspired the testvector design (at RWC 2023) and
allowed us to home x509-limbo under C2SP

● Andrew Pan, Facundo Tuesca, Alex Cameron all designed, discussed,
and engineered components of the implementation or tests

6Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Banner items
● Python Cryptography now has X.509 path validation APIs!

○ Work right out of the box with pip install cryptography!
○ Written in Rust, bound to Python with PyO3!
○ ~2500 new lines of code total
○ No OpenSSL*!

● X.509 validation is scary, so we tested the crap out of it!
○ x509-limbo: a new testsuite for path validation implementations!
○ We want you (other implementations) to integrate it into your tests!
○ It’s already found bugs/discrepancies in other implementations!

https://x509-limbo.com/

7Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

8Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

● …a public key conveyance format
○ “Public key 0xblahblahblah is bound to subject freestuff.example.com”
○ Metadata includes expiration, machine & human-readable policy, expected usage, etc.

● (pubkey, metadata) is signed over by a private key
○ Usually a different private key than the signed-over pubkey’s private half!

X.509 is…

9Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 is…
● … a chaining primitive:

○ Certificate A can sign for Certificate B by conveying pubkeyB

● …not a one-way key ←→ cert mapping
○ A single CA can have multiple keypairs, each with its own certificate

■ …for rotation, fall over, or “just because” reasons
○ A single keypair can have multiple certificates!

■ …for policy reasons (e.g. expiry renewal without key rotation)
■ …for cross-issuance purposes (e.g. a CA certificate signed by a different CA)

10Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 is…
● … a protocol for securely introducing

principals to each other:
○ Chaining allows us to go from a set of locally

trusted entities (the OS/language trust store) to a
remotely untrusted entity that we know (e.g. by
DNS name) but don’t previously trust

○ And vice versa, for mutual authentication (“client”
auth in TLS land)

● Principals can be introduced through
untrusted intermediates!
○ example.com can be securely connected to

regardless of how many intermediate certs it
sends, so long as the final chain construction is
shaped like:

[example.com, …, untrusted, trusted]

11Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

12Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 is…
● … a complete dumpster fire of an ecosystem
● 75% of the world runs on OpenSSL and forks (Libre, Boring)

○ Forks are often better but severely constrained by API/ABI compatibility
○ OpenSSL’s X.509 implementation is half RFC 3280/5280, half 🤷
○ The other 25% is OS implementations, mbedTLS, WolfSSL, GnuTLS, vendor crap,

mystery meat, etc.
○ A bunch of this stuff runs on middleboxes and appliances that are deployed and

promptly forgotten about
● …a playground for exploitable logic and memory safety bugs

○ Geometric combination of ASN.1/DER parsing bugs and X.509 protocol/policy errors
○ Severity ranges from remote triggerable DoS (moderately bad) to false positive

verification (very bad) to remote disclosure of process memory (very, very bad)
○ Some of these bugs are baked into the specs themselves!

■ CVE-2023-0464, CVE-2023-23524

13Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 validation in Python

14Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 in Python: status quo
● Standard library provides ssl, which is a relatively thin wrapper

over OpenSSL
○ Boring/LibreSSL can be used, but not officially supported

upstream
○ Tied closely to the socket API; hard to reuse outside of TLS
○ Very lightly maintained (nobody wants to deal with OpenSSL)

● Third-party libraries are (typically) wrappers over OpenSSL or
platform APIs and are easy to misuse
○ pyOpenSSL (OpenSSL via CFFI), M2Crypto (OpenSSL via SWIG)
○ Exception: certvalidator is pure Python, pulls from OS APIs

via FFI
■ With a generic API!

15Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 in Python: design constraints
● Baseline: TLS certificate validation, consistent with CABF

○ Meaning: DNS/IP names + constraints, RFC 5280 + 6125, some additional stuff on top

● Explicitly excluded:
○ X.509v1, RFC 3280 and earlier profiles
○ CRLs, OCSP, AIA chasing, Certificate Transparency
○ Policy Constraints/Mapping

● Needs to fully exist within PyCA Cryptography
○ Only Python and (mostly) dep-free Rust

■ Absolutely no unsafe Rust
○ pip install cryptography must continue to work on all supported platforms
○ 100% test coverage + correctness over known problematic chains
○ Maintainers are speed freaks

16Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 in Python: design principles
On top of everything, follow Sleevi’s laws:

● There is no one true chain
● Treat path building as an abstract DFS problem

○ With changing constraints (e.g. accumulated Name Constraints)

● All rejections must be encoded into the search itself
○ Rejecting a chain after it’s built means potentially leaving other chains undiscovered

● “Know your limits”
○ Don’t allow arbitrarily deep chains, excessive name/policy comparisons, or anything else that

would not appear in a real PKI

https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6

17Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

X.509 in Python: implementation details
90% of the implementation is Rust, 10% is Python

Rust:

● Trust store, policy, key/SAN/NC parsing, core path building
● PyO3 types that get exposed to Python (but are themselves Rust)

Python:

● PolicyBuilder, misc. small types and type aliases
● Pre-existing cryptography.x509 APIs for certs, extensions, names, etc.

Where is the actual cryptography????

https://pyo3.rs/

18Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

19Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

20Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

21Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

22Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

23Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

24Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

OpenSSL (or ilk) still provides the crypto itself
● Carefully nestled behind abstractions, but still there in the shadows…

○ Accessed through rust-openssl for invariant preservation
○ Abstractions mean that it could be removed, some day

● But nothing else!
○ X.509 parsing = pure Rust!
○ Chain building + profile/policy conformance = pure Rust!!
○ SPKI parsing/key extraction = pure Rust!!!

25Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Testing

26Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Testing: requirements
● We can do a lot with unit tests in Rust and Python, but not enough

○ Remember: 100% coverage requirement!
○ Cryptography ops/backend abstraction means that anything after sig verification

needs to be in Python
○ PyO3 and cargo test don’t always play nicely

● Need a way to reach edge cases and annoying/pathological states
within the validator
○ Possibly gated on extensions, criticality, current NC set, etc.
○ In effect, we need a framework for rapidly churning out graphs/chains that contain

each behavior under evaluation

27Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Testing: x509-limbo
● X.509 path validation testcases are inherently reusable, lots of prior art:

○ BetterTLS (Netflix)
○ x509test (Google)
○ PITTv1/2/3, NIST PKITS, etc.
○ Each has a bespoke testcase/vector format, we want to unify them and add our own

tests!
● x509-limbo is our testsuite + testvector format

○ Each testcase is (roots, intermediates, leaves, expected-result, extra-constraints)
○ Compiled to a giant blob of JSON
○ Contains both 3p tests (BetterTLS) and our own artisanal tests
○ Grouped into namespaces, e.g. webpki::nc::* for NC handling under the CABF

profile

28Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

29Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

30Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Testing: x509-limbo
● We want other implementations

(Go, OpenSSL, etc.) to integrate
x509-limbo into their testsuites!

● Created our own basic harnesses
for each as reference

● Found/surfaced a bunch of bugs
in the process
○ False verifications, incorrect failures

(rejecting chains that should be
accepted)

○ Lots of Name Constraint bugs
○ Memory corruption: CVE-2024-28835:

OOB caused by long cert chain in
GnuTLS

https://gitlab.com/gnutls/gnutls/-/issues/1525

31Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Lessons learned & future work

32Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Lessons learned
RFCs and CABF say one thing, implementations do another

● CABF says to prefer SAN always; many implementations check Subject
or both

● Many implementations don’t bother with SN checks
○ Guessable/fixed serials were what made Flame (2008) possible!

● Most implementations have at least one NC bug, causing false
negatives
○ Typically in cross-issuance/self-issuance graphs

● Most implementations handle self-issued cert pathlens incorrectly
● Many implementations ignore/don’t enforce presence of SKI/AKI

33Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Lessons learned
X.509 has plenty of quirks to lawyer over

● Negative 20-octet serial numbers that are really 21 octets when DER
encoded, valid or not?

● 0.999… != 1 according to RFC 5280
● “Root” certs are a lie, only “trust anchors” exist

○ Unless you’re in CABF, in which case trust anchors are a lie and only roots exist

● Unclear whether conveying a TA as a certificate means respecting its
exts/constraints
○ PyCA respects constraints on roots, other impls (notably rustls) do not
○ …but some browsers do? Some of the time?

● Unclear whether the leaf’s pubkey is subject to CABF constraints

34Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Lessons learned
Despite complexity and ambiguity, things are Pretty Good™:

● The Web PKI is in much better shape in 2024 than 2014, thanks to CABF,
shorter validities, Certificate Transparency, and higher expectations
○ No more secretly issued intermediate CAs, no more toothless audit failures
○ No more BER or malformed DER roots, no more V1 roots
○ Only a small handful of invalid serials left

● Hardest part was determining and testing PyCA’s “break budget” vs.
other implementations, not the actual code itself
○ Core path building is <400 lines of well-commented Rust

● Some bugs still snuck through!
○ Root key strength check bug, unknown NC handling bug, datetime object TZ bug, …
○ Each got a new x509-limbo case, revealing bugs in other impls too!

35Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Future work
● Only TLS server cert validation is implemented

○ TLS client cert validation soon™: https://github.com/pyca/cryptography/pull/10345
■ Merged, but not in a release yet

● Other profiles? More configuration knobs?
○ Intel SGX, Authenticode, etc.
○ Users want even more control over which key/signature algorithms are allowed

■ Sometimes users want bad things
○ Guiding principle: future knobs/config points must not make the current APIs harder to

use/easier to misuse

● Spread the gospel of x509-limbo
○ Get more implementations to adopt it upstream
○ Cannibalize more related test suites
○ Support profiles other than RFC 5280 and CABF

https://github.com/pyca/cryptography/pull/10345

36Open Source Cryptography Workshop 2024 | Implementing X.509 Path Validation for Python

Thank you!
Slides will be available here:

https://yossarian.net/publications#oscw-2024
Resources:
● ToB blog: We build X.509 chains so you don't have to
● Ryan Sleevi: Path Building vs Path Verifying: The Chain of Pain
● Andrew Ayer: Fixing the Breakage from the AddTrust External CA Root

Expiration
● Robert Alexander: Name "Constrain't" on Chrome
● Many specs:

○ RFC 5280 (X.509 PKIX)
○ RFC 6125 (domain-based identities, wildcards in PKIX)
○ CABF BRs

https://yossarian.net/publications#oscw-2024
https://blog.trailofbits.com/2024/01/25/we-build-x-509-chains-so-you-dont-have-to/
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://www.agwa.name/blog/post/fixing_the_addtrust_root_expiration
https://www.agwa.name/blog/post/fixing_the_addtrust_root_expiration
https://alexsci.com/blog/name-non-constraint/
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://cabforum.org/working-groups/server/baseline-requirements/documents/

