Going Post-Quantum
Deirdre Connolly - SandboxAQ

#REALWORLDCRYPTO

Key Agreement
Signatures
‘Fancy Crypto’

Key Agreement
Signhatures
‘Fancy Crypto’

Key
Agreement

Signatures
‘Fancy Crypto’

RIP Diffie-Hellman

Shrpanne

Beratseaty
2323
SEARREPRR

5

@ Choose sk, Choose skg

@ kn=sksG(p,a) kg=sksG(p,a)

©), ka
P

@ Kap=SKaKg

11

KEMSs

KEMSs

Key Encapsulation Mechanisms

13

14

encapsulation key

Bob’s copy of the
shared secret key

Alice’s copy of the
shared secret key

15

Encaps(pk)
01 m &M

02 ¢ < Enc

03 K :=
04 return

/

pk,m)
(m, c)
(K c)

Decaps™ (sk, c)

05 m' := Dec'(sk, c)

06 ifm =.1

07 return K := H (DS, ¢)
08 else return K := H (m/, ¢)

16

Fujisaki-Okamoto (FO) transform

17

Fujisaki-Okamoto (FO) transform

- Turns an IND-CPA-secure public key encryption scheme

iInfo a IND-CCA key encapsulation scheme

18

Fujisaki-Okamoto (FO) transform

- Turns an IND-CPA-secure public key encryption scheme
iInfo a IND-CCA key encapsulation scheme

- Popular amongst all the NIST PQC KEM candidates

19

Fujisaki-Okamoto (FO) transform

- Turns an IND-CPA-secure public key encryption scheme
iInfo a IND-CCA key encapsulation scheme

- Popular amongst all the NIST PQC KEM candidates

- Explicit and implicit rejection forms, the KEMs we care
about are all implicit rejection (no error codes or panics,

returns a non-zero pseudorandom value always)

20

PQC Standardization Process: Announcing Four Candidates
to be Standardized, Plus Fourth Round Candidates

July 05, 2022

f v

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

21

Public-Key Encryption/KEMs

CRYSTALS-KYBER

Algorithms to be Standardized

Digital Signatures

CRYSTALS-Dilithium
FALCON

SPHINCS*

22

Public-Key Encryption/KEMs

CRYSTALS-KYBER

23

CRYSTALS-KYBER

Algorithm Specifications And Supporting Documentation

(version 3.02)

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

August 4, 2021

Algorithm 7 KYBER.CCAKEM.KeyGen()

Output: Public key pk € B2k n/8+32
Output: Secret key sk € B24*n/8+96

1: 2 < 332

2: (pk, sk’) := KYBER.CPAPKE.KeyGen()
3: sk = (sk'[|pk||H(pk)||2)

4: return (pk, sk)

25

Algorithm 8 KYBER.CCAKEM.Enc(pk)

Input: Public key pk € B12kn/8+32
Output: Ciphertext ¢ € Bdukn/8+dyn/8
Output Shared key K € B*

: m B32

: m « H(m)

+ (K, r) = G(m|H(pk))

: ¢ := KYBER.CPAPKE.Enc(pk, m,)
. K = KDF(K||H(c))

: return (¢, K)

26

Algorithm 9 KyBER.CCAKEM.Dec(c, sk)

Input: Ciphertext ¢ € Bdukn/8+dvn/8
Input: Secret key sk € B24kn/8+96
Output: Shared key K € B*
pk = sk +12-k-n/8

h:=sk+24-k-n/8+32¢€ B*?
z:=sk+24-k-n/8+ 64
m’ := KYBER.CPAPKE.Dec(sk, c)
(K',r") = G(m/||h)
¢’ .= KYBER.CPAPKE.Enc(pk,m/,r’)
if ¢ = ¢’ then

return K := KDF(K'||H(c))
else

return K := KDF(z||H(c))
: end if
: return K

1:
2:
3:
4:
o:
6:
y
8:
9:

_ =

27

FIPS 203 (Draft)

Federal Information Processing Standards Publication

4 Mod EIe-Lattlce-based

s Key-Encapsulation
Mechanism Standard

Category: Computer Security

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.203.ipd

Published August 24, 2023

Subcategory: Cryptography

28

Algorithm 15 ML-KEM.KeyGen()

Generates an encapsulation key and a corresponding decapsulation key.

Output: Encapsulation key ek € B334+32,
Output: Decapsulation key dk € B768k+96

. 74 B2 > z is 32 random bytes (see Section 3.3)
. (ekpkg,dkpkg) < K-PKE.KeyGen() > run key generation for K-PKE

. dk < (dkpke||ek||H (ek)||z) > KEM decaps key includes PKE decryption key

1
2
3: ek < ekpkg > KEM encaps key is just the PKE encryption key
4
5: return (ek,dk)

29

Algorithm 16 ML-KEM.Encaps(ek)

Uses the encapsulation key to generate a shared key and an associated ciphertext.

Validated input: encapsulation key ek € B384k+32,
Output: shared key K € B*?.
Output: ciphertext ¢ € B32(duk+dy)

:m < B32 > m is 32 random bytes (see Section 3.3)
. (K,r) < G(m||H(ek)) > derive shared secret key K and randomness r

: ¢ < K-PKE.Encrypt(ek,m,r) > encrypt m using K-PKE with randomness r
: return (K, ¢)

30

Algorithm 17 ML-KEM.Decaps(c,dk)
Uses the decapsulation key to produce a shared key from a ciphertext.

Validated input: ciphertext ¢ € B32(duk+dy),
Validated input: decapsulation key dk € B768k+96
Output: shared key K € B32,

dkpkg < dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key
ekpgg < dk[384k : 768k + 32| > extract PKE encryption key
h < dk([768k + 32 : 768k + 64] > extract hash of PKE encryption key
z < dk[768k + 64 : 768k + 96] > extract implicit rejection value
m’ < K-PKE.Decrypt(dkpkg,c) > decrypt ciphertext
(K',7") G(m |}
K « J(z||c,32)
¢’ + K-PKE.Encrypt(ekpkg,m’,r’) > re-encrypt using the derived randomness 7/
if c # ¢ then

K «K > if ciphertexts do not match, “implicitly reject”
. end if
. return K’

1}
2:
3:
4.
S:
6:
b
8:
9:

e i
N = O

Algorithm 17 ML-KEM.Decaps(c,dk)
Uses the decapsulation key to produce a shared key from a ciphertext.

Validated input: ciphertexte B32(duk-tdy)
Validated input: decapsulation key dk € B768k+96
Output: shared key K € B32,

dkpkg < dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key
ekpgg < dk[384k : 768k + 32| > extract PKE encryption key
h < dk([768k + 32 : 768k + 64] > extract hash of PKE encryption key
z < dk[768k + 64 : 768k + 96] > extract implicit rejection value
m’ <— K-PKE.Decrypt(dkpke,[c) > decrypt ciphertext
|_(_K’,r’) — G(m'||h)
K « J(Z][c,32)
¢’ + K-PKE.Encrypt(ekpkg,m’,r’) > re-encrypt using the derived randomness 7/
if c # ¢ then

K «K > if ciphertexts do not match, “implicitly reject”
. end if
. return K’

1}
2:
3:
4.
S:
6:
b
8:
9:

e i
N = O

Re-encapsulation Attacks

Keeping Up with the KEMs:

Stronger Security Notions for KEMs
and automated analysis of KEM-based protocols

Version 1.0.5, March 5, 2024*

Cas Cremers, Alexander Dax, and Niklas Medinger

CISPA Helmholtz Center for Information Security
{cremers,alexander.dax,niklas.medinger }@cispa.de

https://eprint.iacr.org/2023/1933.pdf

Re-encapsulation attack in Signal PQXDH v1'

KEM Re-Encapsulation Attack

We show that when using an IND-CCA secure public key encryption scheme to build an IND-CCA
secure KEM, an attacker can make two parties compute the same key, even though both used a
distinct PQPK, as soon as only one of the POPK was compromised. This attack is a new attack in the

class of re-encapsulation attacks as introduced by Cremers, Dax, and Medinger.
Consider the following execution:

1. An attacker is able to compromise some PQPK of responder B, while another PQPK2 of the same
responder is uncompromised.

2. The attacker makes initiator A use PQPK, and obtain a ciphertext CT, from which it can learn the
shared secret SS, as PQPK was compromised.

3. Now, the attacker, not violating IND-CCA, comes up with a new ciphertext CT', valid for PQPK2,
such that the decapsulation of CT* is also SS.

4. The attacker then forwards to B the message from A, but swaps CT by CT', and the key identifier
of PQPK by PQPK2.

5. The responder B succeeds in computing the key using PQPK2.

The main issue here is that the compromise of a single PQPK in fact enables an attacker to
compromise all future KEM shared secrets of the responder, and this even after the responder deleted
the compromised PQPK.

" https://cryspen.com/post/pgxdh/

https://cryspen.com/post/pqxdh/

Re-encapsulation attack in Signal PQXDH v1'

As this attack can be carried out without violating the IND-CCA assumption, it turns out that the IND-
CCA security of the KEM scheme is not enough to show the full security of POXDH. We in fact require
an additional assumption, which is not a classical cryptographic one, but which informally captures
that the shared secret is strongly linked to the public key. While many schemes such as Kyber/ML-
KEM do include the public key in the shared secret derivation, it may be prudent to add PQPK
somewhere else in the protocol, for instance in the associated data of the AEAD encrypted message
or directly in the KDF. Such changes are considered for a next version of the PQXDH protocol.

This is an important observation, as some KEM designers explicitly state that "Application designers
are encouraged to assume solely the standard IND-CCA2 property” [MCR], and notably, both HQC and
BIKE do not directly tie the shared secret to the public key, but only to the ciphertext.

" https://cryspen.com/post/pgxdh/

https://cryspen.com/post/pqxdh/

Not just a PQ concern!

HPKE’s DHKEM' Binding Properties

' https://www.rfc-editor.org/rfc/rfc9180.htmi#name-dh-based-kem-dhkem

38

https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem
https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem

HPKE’s DHKEM' Binding Properties

- DHKEM is MAL-BIND-K-CT and MAL-BIND-K-PK secure?

' https://www.rfc-editor.org/rfc/rfc9180.html#tname-dh-based-kem-dhkem
? https://eprint.iacr.org/2023/1933.pdf

39

https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem
https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem

HPKE’s DHKEM' Binding Properties

- DHKEM is MAL-BIND-K-CT and MAL-BIND-K-PK secure?
- These give the strongest protections against re-encapsulation attacks

from a malicious adversary manipulating key material however they
like (MAL)

' https://www.rfc-editor.org/rfc/rfc9180.html#tname-dh-based-kem-dhkem
? https://eprint.iacr.org/2023/1933.pdf 40

https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem
https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem

HPKE’s DHKEM' Binding Properties

- DHKEM is MAL-BIND-K-CT and MAL-BIND-K-PK secure?

- These give the strongest protections against re-encapsulation attacks
from a malicious adversary manipulating key material however they
like (MAL)

- It is SAFE to just take the raw shared_secret from DHKEM and use it
in HPKE’s KeySchedule() without including any other KEM

‘transcript’ context

' https://www.rfc-editor.org/rfc/rfc9180.html#tname-dh-based-kem-dhkem
? https://eprint.iacr.org/2023/1933.pdf

41

https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem
https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem

HPKE’s DHKEM' Binding Properties

DHKEM is MAL-BIND-K-CT and MAL-BIND-K-PK secure?

These give the strongest protections against re-encapsulation attacks
from a malicious adversary manipulating key material however they
like (MAL)

It is SAFE to just take the raw shared_secret from DHKEM and use it
in HPKE’s KeySchedule() without including any other KEM
‘transcript’ context

What about ML-KEM?

' https://www.rfc-editor.org/rfc/rfc9180.htmi#name-dh-based-kem-dhkem

? https://eprint.iacr.org/2023/1933.pdf

42

https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem
https://www.rfc-editor.org/rfc/rfc9180.html#name-dh-based-kem-dhkem

ML-KEM' Binding Properties?

Algorithm 17 ML-KEM .Decaps(c,dk)
Uses the decapsulation key to produce a shared key from a ciphertext.

Validated input: ciphertext ¢ € B32(duk+dv),
Validated input: decapsulation key dk & B768%+96,
Output: shared key K € B¥.

. dkpkg ¢ dk|[0 : 384k] o> extract (from KEM decaps key) the PKE decryption key

. ekpkg < dk[384k : 768k + 32] > extract PKE encryption key
3: h + dk[768k+ 32 : 768k + 64] > extract hash of PKE encryption key
4: z ¢ dk[768k + 64 : 768k + 96| > extract implicit rejection value

: m' + K-PKE.Decrypt(dkpkg,c) > decrypt ciphertext

. (K, /) < G(m'||h)

: K+ J(z]|c,32)

: ¢! + K-PKE.Encrypt(ekpkg,m’,r’) > re-encrypt using the derived randomness »’/

. ifc# ¢ then

K'+K > if ciphertexts do not match, “implicitly reject”
. end if
: return K’

' https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
? https://eprint.iacr.org/2023/1933.pdf

https://eprint.iacr.org/2023/1933.pdf

ML-KEM' Binding Properties?

Algorithm 17 ML-KEM Decaps(c,dk) e ML-KEM’s shared secret K binds
Uses the decapsulation key to produce a shared key from a ciphertext. ekPKE (P K) via hashin g in the hash
Validated input: ciphertext ¢ € B32(duk+dv), 5 _ K-

Validated input: decapsulation key dk & B768k+% Of ekP KE: MAL-BIND-K-PK

Output: shared key K € B2,
1: dkpkg < dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key
> extract PKE encryption key

h + dk|768k + 32 : 768k + 64 > extract/hash of PKE encryption key

z + dk[768k + 64 : 768k + 96 o extract implicit rejection value

: m' «+ K-PKE.Decrypt(dkpkE,c) > decrypt ciphertext
MK Y) «— G ||k

: K+ J(z]|c,32)

: ¢! + K-PKE.Encrypt(ekpkg,m’,r’) > re-encrypt using the derived randomness »’/
. ifc# ¢ then

K'+K > if ciphertexts do not match, “implicitly reject”
. end if

: return K’

2:
3:
4:
5
6
7
8
9

' https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf

? https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2024 /039.pdf

44

https://eprint.iacr.org/2023/1933.pdf

ML-KEM' Binding Properties?

Algorithm 17 ML-KEM .Decaps(c, dk)
Uses the decapsulation key to produce a shared key from a ciphertext.

Validated input: ciphertext ¢ € B32(dk+dv),
Validated input: decapsulation key dk € B768%+
Output: shared key K € B2,

1: dkpkg < dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key
> extract PKE encryption key

h + dk|768k + 32 : 768k + 64 > extract/hash of PKE encryption key

z + dk[768k + 64 : 768k + 96 o extract implicit rejection value

: m' «+ K-PKE.Decrypt(dkpkE,c) > decrypt ciphertext
MK Y) «— G ||k

: K+ J(z]|c,32)

: ¢! + K-PKE.Encrypt(ekpkg,m’,r’) > re-encrypt using the derived randomness »’/
. ifc# ¢ then

K'+K > if ciphertexts do not match, “implicitly reject”
. end if

: return K’

96

2:
3:
4:
5
6
7
8
9

ML-KEM’s shared secret K binds
ekPKE (PK) via hashing in the hash
of ekPKE: MAL-BIND-K-PK

Binding the ciphertext c relies on
the robustness properties of K-PKE

' https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf

? https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2024 /039.pdf

45

https://eprint.iacr.org/2023/1933.pdf

ML-KEM' Binding Properties?

Algorithm 17 ML-KEM Decaps(c,dk) e ML-KEM’s shared secret K binds
Uses the decapsulation key to produce a shared key from a ciphertext. ekPKE (P K) via hashi gle] in the hash
Validated input: ciphertext ¢ € B32(dk+dv), of ekPKE: MAL-BIND-K-PK

Validated input: decapsulation key dk & B768k+% .)) .
Output: shared key K € B2, e Binding the ciphertext crelies on

1: dkpkg < dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key the robustness properTies of K-PKE

> extract PKE encryption key

> extractfhash of PKE encryption key] e Shown to be chosen ciphertext
z + dk|768k + 64 : 768k + 96 > extract implicit rejection value c . .
e resistant’: implies LEAK-BIND-K-CT

: m' «+ K-PKE.Decrypt(dkpkE,c) > decrypt ciphertext
MK Y) «— G ||k

: K+ J(z]|c,32)

: ¢! + K-PKE.Encrypt(ekpkg,m’,r’) > re-encrypt using the derived randomness »’/
. ifc# ¢ then

K'+K > if ciphertexts do not match, “implicitly reject”
. end if

: return K’

2:
3:
4:
5
6:
7
8
9

P = o

' https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf

? https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2024 /039.pdf

46

https://eprint.iacr.org/2023/1933.pdf
https://eprint.iacr.org/2024/039.pdf
https://eprint.iacr.org/2024/039.pdf

ML-KEM' Binding Properties?

sl © L-KEM's shared secret K binds
Uses the decapsulation key to produce a shared key from a ciphertext. ekPKE (P K) via hashi gle] in the hash
Validated input: ciphertext ¢ € B32(dk+dv), of ekPKE: MAL-BIND-K-PK

Validated input: decapsulation key dk & B768k+% .)) .
Output: shared key K € B2, e Binding the ciphertext crelies on

1: dkpkg < dk[0 : 384k] > extract (from KEM decaps key) the PKE decryption key o ~
: ekpkg < dk([384k : 768k + 32 > extract PKE encryption key The rObUSTneSS propeI‘TleS Of K-PKE

h + dK[768k + 32 : 168k + 64 > extract[hash of PKE encryption key] e Shown to be chosen ciphertext

z + dk[768k + 64 : 768k + 96 o extract implicit rejection value c . .

: m' «+ K-PKE.Decrypt(dkpkE,c) > decrypt ciphertext w: |mp||es LEAK-BIND-K-CT
K,r) « G(m'|lh e LEAK is resistant to adversaries

: K+ J(z]|c,32) .
: ¢ + K-PKE.Encrypt(ekpkg,m’,7’) > re-encrypt using the derived randomness »/ with access to lea ked,
. ifc# ¢ then .
K'+K > if ciphertexts do not match, “implicitly reject” hOﬂGSﬂY'generCﬁ'ed key pairs,
- strictly weaker security than MAL
. return

; e Strictly weaker binding properties

as a KEM than DHKEM

2
3:
4:
S.
6:
7
8
9

e =

(]

' https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf

? https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2024 /039.pdf

https://eprint.iacr.org/2023/1933.pdf
https://eprint.iacr.org/2024/039.pdf
https://eprint.iacr.org/2024/039.pdf

A counterexample: Classic McEliece'

" https://classic.mceliece.org/mceliece-spec-20221023.pdf

48

A counterexample: Classic McEliece'

5.6 Decapsulation
The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

1. Set b« 1.

2. Extract s € F} and IV = (g, 0,], ...,c/,_;) from the private key.

2
3. Compute e + DECODE(C,I"). If e = L, set e ¢~ s and b + 0.

4. Compute K = H(b, e, C); see Section 6.2 for H input encodings.

5. Output session key K.

" https://classic.mceliece.org/mceliece-spec-20221023.pdf

49

A counterexample: Classic McEliece'

5.6 Decapsulation
The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

1. Set b« 1.

2. Extract s € F} and IV = (g, 0,], ...,c/,_;) from the private key.

2
3. Compute e + DECODE(C,I"). If e = L, set e ¢~ s and b + 0.

4. Compute K = H(b, e, C); see Section 6.2 for H input encodings.

5. Output session key K.

" https://classic.mceliece.org/mceliece-spec-20221023.pdf

IND-CCA &

50

A counterexample: Classic McEliece'

e IND-CCA B

e Binds the ciphertext C:

5.6 Decapsulation MAL-BIND-K-CT?

The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

1. Set b« 1.

2. Extract s € F} and IV = (g, 0,], ...,c/,_;) from the private key.

2
3. Compute e + DECODE(C,I"). If e = L, set e « s and b + 0.

4. Compute K = H(b, e, C); see Section 6.2 for H input encodings.

5. Output session key K.

" https://classic.mceliece.org/mceliece-spec-20221023.pdf
2 https://eprint.iacr.org/2023/1933.pdf

51

A counterexample: Classic McEliece'

5.6 Decapsulation

The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

1.

2
3.
4.

5

Set b« 1.

2. Extract s € F} and IV = (9,0,), .. ., a),_,) from the private key.

Compute e « DECODE(C,I"). If e = L, set e < s and b + 0.

Compute K = H(b, e, C); see Section 6.2 for H input encodings.

5. Output session key K.

" https://classic.mceliece.org/mceliece-spec-20221023.pdf
2 https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2021/708.pdf

IND-CCA @

Binds the ciphertext C:
MAL-BIND-K-CT

Encapsulation key binding depends
on PKE robustness?®

52

A counterexample: Classic McEliece'

o
o
5.6 Decapsulation
o
The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:
1. Set b« 1. o

2. Extract s € F} and IV = (g, 0,], ...,c/,_;) from the private key.

4. Compute K = H(b, e, C); see Section 6.2 for H input encodings.

2
3. Compute e + DECODE(C,I"). If e = L, set e « s and b + 0.
1
5

5. Output session key K.

" https://classic.mceliece.org/mceliece-spec-20221023.pdf
2 https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2021/708.pdf

IND-CCA 8

Binds the ciphertext C:
MAL-BIND-K-CT

Encapsulation key binding depends
on PKE robustness?®

[3]: ‘for any plaintext m, they find
that it is possible to construct a
single ciphertext ¢ that always
decrypts to m under any Classic
McEliece private key’

53

A counterexample: Classic McEliece'

e IND-CCA

e Binds the ciphertext C:
MAL-BIND-K-CT

e Encapsulation key binding depends
on PKE robustness?®

5.6 Decapsulation

The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

L Setbe L. e [3]: ‘for any plaintext m, they find
2. Extract s € F} and IV = (g, 0,], ...,c/,_;) from the private key. that it is pOSSible to construct a
3. Compute e + DECODE(C,I"). If e = L, set e « s and b + 0. Single CipherTeXT C Tth GIWOyS
4. Compute K = H(b, e, C); see Section 6.2 for H input encodings. deCI’ypTS tom under Gny CIGSSiC
5. Output session key K. McEliece private key’
e Therefore offers no PK binding at
all

" https://classic.mceliece.org/mceliece-spec-20221023.pdf
2 https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2021/708.pdf 54

A counterexample: Classic McEliece'

e IND-CCAM
e Binds the ciphertext C:
MAL-BIND-K-CT
e Encapsulation key binding depends
The following algorithm DECAP takes as input a ciphertext C and a private key, and outputs on PKE rObUSTne553
a session key K. Here is the algorithm: ® [3] ‘for Gny p|CIin1'eX1' m’ -I-hey f|nd
L Set b ¢ 1. that it is possible to construct a
2. Extract s € F; and I'" = (9,0, 0}, ...,a,_;) from the private key. Single Cipher‘rex‘l’ c that Qlwqys
3. Compute e + DECODE(C,I"). If e = L, set e < s and b « 0. decryp'l's 0o m under any Classic
4. Compute K = H(b, e, C); see Section 6.2 for H input encodings. McEliece priVCITe key’
5. Output session key K. e Therefore offers no PK binding at
all
e If used in place of DHKEM, allows
an HPKE payload to be decrypted
under any key pair, not just the one
used to encrypt it

5.6 Decapsulation

" https://classic.mceliece.org/mceliece-spec-20221023.pdf
2 https://eprint.iacr.org/2023/1933.pdf
* https://eprint.iacr.org/2021/708.pdf

56

Hash In
EVERYTHING.

If you can go
PQ-only, do.

If you must go
hybrid, hash In
everything.

TLS 1.3 hybrid key agreement’

In other words, the shared secret is calculated as
concatenated_shared_secret = shared_secret_1 || shared_secret_2

and inserted into the TLS 1.3 key schedule in place of the (EC)DHE

shared secret, as shown in Figure 1. 193 struct CombinedSecret([u8; COMBINED_SHARED_SECRET_LEN]);
194
| 195 v impl CombinedSecret {
v 196 v fn combine(x25519: SharedSecret, kyber: kem::SharedSecret) —> Self {
Derive—Secret(T "dEIiVed", " ") 197 let mut out = CombinedSecret([0u8; COMBINED_SHARED_SECRET_LEN]);
| 198 out.0[..X25519_LEN].copy_from_slice(x25519.secret_bytes());
v 199 out.@[X25519_LEN..].copy_from_slice(kyber.as_ref());
200 out

concatenated_shared_secret -> HKDF-Extract = Handshake Secret

VY.V V.V VYV VVVVVV.VVV.VV.V.V.VVV.VY | 201 ¥
+o---- > Derive-Secret(...) 20z ¥
toom- > Derive-Secret(...)

\")

Derive-Secret(., "derived", "")

V'

' https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design _
2 https://github.com/rustls/rustls/blob/main/rustls-post-quantum/src/lib.rs

60

TLS 1.3 hashes In
EVERYTHING'

' https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.1

Be like TLS 1.3: hash
In everything

Key Agreement
Signatures
‘Fancy Crypto’

Key Agreement
Signatures
‘Fancy Crypto’

65

PQC Standardization Process: Announcing Four Candidates
to be Standardized, Plus Fourth Round Candidates

July 05, 2022

f v

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

66

Algorithms to be Standardized

Public-Key Encryption/KEMs Digital Signatures

CRYSTALS-KYBER CRYSTALS-Dilithium
FALCON

SPHINCS*

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

67

Digital Signatures

CRYSTALS-Dilithium
FALCON

SPHINCS*

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

68

Key Agreement
Signatures
‘Fancy Crypto’

Key
Agreement

Signatures
‘Fancy Crypto’

Post-quantum cryptography is too damn big.

March 22, 2024

Large-scale quantum computers are capable of breaking all of the common forms of asymmetric cryptography used on
the Internet today. Luckily, they don’t exist yet. The Internet-wide transition to post-quantum cryptography began in 2022
when NIST announced their final candidates for key exchange and signatures in the NIST PQC competition. There is plenty,
written about the various algorithms and standardization processes that are underway.

The conventional wisdom is that it will take a long time to transition to post-quantum cryptography, so we need to start
standardizing and deploying things now, even though quantum computers are not actually visible on the horizon. We’ll
take the best of what comes out the NIST competitions, and deploy it.

Unfortunately, there has not been enough discussion about how what NIST has standardized is simply not good enough
to deploy on the public web in most cases. We need better algorithms. Specifically, we need algorithms that use fewer
bytes on the wire—a KEM that when embedded in a TLS ClientHello is still under one MTU, a signature that performs on
par with ECDSA that is no larger than RSA-2048, and a sub-100 byte signature where we can optionally handle a larger
public key.

Digital Signatures

CRYSTALS-Dilithium
FALCON

SPHINCS*

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

72

Private Key Public Key Signature Size

ML-DSA-44 2528 1312 2420
ML-DSA-65 4000 1952 3293

ML-DSA-87 4864 2592 4595

Table 2. Sizes (in bytes) of keys and signatures of ML-DSA.

73

FaLcon-512
FaLcon-1024

keygen (ms) | keygen (RAM)

pub i ig sz
 ees oo swet zmo o7 e

74

Table 1. SLH-DSA parameter sets

pk
h d W a m level bytes bytes

SLH-DSA-SHA2-128s
SLH-DSA-SHAKE-128s
SLH-DSA-SHA2-128f
SLH-DSA-SHAKE-128f
SLH-DSA-SHA2-192s
SLH-DSA-SHAKE-192s
SLH-DSA-SHA2-192f
SLH-DSA-SHAKE-192f
SLH-DSA-SHA2-256s
SLH-DSA-SHAKE-256s
SLH-DSA-SHA2-256f
SLH-DSA-SHAKE-256f

63 7 9 12 30 1 32 7856

66 6 34 1 32 17088

63 14 39 48 16224

66 8 42 48 35664

64 8 47 64 29792

68 17 49 64 49856

SQIsignHD: New Dimensions in Cryptography

ck D“““i\l..'[lmll'h—lm»u—’.’m\nfﬂ‘u(.ﬂ Antonin Leroux 3,4{0009-0002—-3737—-0075|
: 2{0000—0003 — 4375 — 427 -
Damien Robert!:2(0000-0003—4378-4274] 54 Benjamin
Wesolowski® 000000031249

! Univ. Bordeaux, CNRS, INRIA, IMB, UMR ! 00 Talence, France
RIA, IMB, UMR 5251, F-33400, Talence, France
{pierrick.dartois,damien.robert}@inria. fr
DGA-MI, Bruz, France
' IRMAR - UMR , Université de Rennes, France
antonin.leroux@polytechnique.org
ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France
benjamin.wesolowskiQens-lyon.fr

Abstrac ntroduce SQIsignHD, a new post-quantum digital sig-
nature scheme inspired by SQlsign. SQIsignHD exploits the recent al-
gorithmic breakthrough underlying the attack on SIDH, which allows
to efficiently represent isogenies of arbitrary degrees as components of a
higher dimensional isogeny. SQlsignHD overcomes the main drawbacks
of SQIsign, First, it scales well to high security levels, since the public
parameters for SQlsignHD are easy to generate: the characteristic of the
underlying field needs only be of the form 1. Second, the signing
procedure is simpler and more efficient. Our signing procedure imple-
mented in C runs in 28 ms, which is a significant improvement compared
to SQISign. Third, the scheme is easier to analyse, allowing for a much
more compelling security reduction. Finally, the 3 2 8 are even
more compact than (the already record-breaking) SQlsign, with com-
pressed signatures as small as 109 bytes for the post-quantum NIST
level of security, These advantages may come at the expense of the veri-
fication, which now requires the computation of an isogeny in dimension

ask whose optimised cost till uncertain, as it has been the focus
of very little attention. Our experimental sagemath implementation of
the verification runs in around 600 ms, indicating the potential cryp-
tographic interest of dimension 4 after optimisations and low
level implementation,

Key Agreement
Signatures
‘Fancy Crypto’

Key Agreement
Signhatures
‘Fancy Crypto’

A Framework for Practical Anonymous Credentials from Lattices

Jonathan Bootle Vadim Lyubashevsky
jbt@zurich.ibm.com vad@zurich.ibm.com
IBM Research Europe - Zurich, Switzerland = IBM Research Europe - Zurich, Switzerland

Ngoc Khanh Nguyen Alessandro Sorniotti
khanh.nguyen@epfl.ch aso@zurich.ibm.com
EPFL, Switzerland IBM Research Europe - Zurich, Switzerland

Abstract. We present a framework for building practical anonymous credential schemes based on the
hardness of lattice problems. The running time of the prover and verifier is independent of the number
of users and linear in the number of attributes. The scheme is also compact in practice, with the proofs
being as small as a few dozen kilobytes for arbitrarily large (say up to 2128) numbers of users with
each user having several attributes. The security of our scheme is based on a new family of lattice
assumptions which roughly states that given short pre-images of random elements in some set S, it is
hard to create a pre-image for a fresh element in such a set. We show that if the set admits efficient
zero-knowledge proofs of knowledge of a commitment to a set element and its pre-image, then this yields
practically-efficient privacy-preserving primitives such as blind signatures, anonymous credentials, and
group signatures. We propose a candidate instantiation of a function from this family which allows for
such proofs and thus yields practical lattice-based primitives.

SLAP: Succinct Lattice-Based Polynomial Commitments from
Standard Assumptions

Martin R. Albrecht Giacomo Fenzi
martin.albrecht@{kcl.ac.uk,sandboxaq.com} giacomo.fenzi@epfl.ch
King’s College London and SandboxAQ EPFL

Oleksandra Lapiha Ngoc Khanh Nguyen
sasha.lapiha.2021@live.rhul.ac.uk khanh.nguyen@epfl.ch
Royal Holloway, University of London EPFL

Abstract

Recent works on lattice-based extractable polynomial commitments can be grouped into two
classes: (i) non-interactive constructions that stem from the functional commitment by Albrecht,
Cini, Lai, Malavolta and Thyagarajan (CRYPTO 2022), and (ii) lattice adaptations of the
Bulletproofs protocol (S&P 2018). The former class enjoys security in the standard model, albeit
a knowledge assumption is desired. In contrast, Bulletproof-like protocols can be made secure
under falsifiable assumptions, but due to technical limitations regarding subtractive sets, they
only offer inverse-polynomial soundness error. This issue becomes particularly problematic when
transforming these protocols to the non-interactive setting using the Fiat-Shamir paradigm.

In this work, we propose the first lattice-based non-interactive extractable polynomial com-
mitment scheme which achieves polylogarithmic proof size and verifier runtime (in the length
of the committed message) under standard assumptions. At the core of our work lies a new
tree-based commitment scheme, along with an efficient proof of polynomial evaluation inspired
by FRI (ICALP 2018). Natively, the construction is secure under a “multi-instance version” of
the Power-Ring BASIS assumption (Eprint 2023/846). We then base security on the Module-SIS
assumption by introducing several re-randomisation techniques which can be of independent
interest.

80

SWOOSH: Efficient Lattice-Based Non-Interactive Key Exchange

Phillip Gajland!-?, Bor de Kock?, Miguel Quaresma!, Giulio Malavolta®!, and Peter Schwabe!-

IMax Planck Institute for Security and Privacy, Bochum, Germany
2Ruhr University Bochum, Bochum, Germany

3NTNU - Norwegian University of Science and Technology, Trondheim, Norway
4Bocconi University, Milan, Italy
SRadboud University, Nijmegen, The Netherlands
phillip.gajland@{mpi-sp.org, rub.de}, bor.dekock@ntnu.no,
{miguel.quaresma,giulio.malavolta}@mpi-sp.org, peterl@cryptojedi.org

81

In this work, we challenge this folklore belief and
provide the first evidence against it. We construct an
efficient lattice-based NIKE whose security is based on the
standard module learning with errors (M-LWE) problem in
the quantum random oracle model. Our scheme is obtained
in two steps: (i) A passively-secure construction that
achieves a strong notion of correctness, coupled with (ii) a
generic compiler that turns any such scheme into an
actively-secure one. To substantiate our efficiency claim, we
provide an optimised 1implementation of our
passively-secure construction in Rust and Jasmin. Our
implementation demonstrates the scheme’s applicability to
real-world scenarios, yielding public keys of approximately
220KBs. Moreover, the computation of shared keys takes
fewer than 12 million cycles on an Intel Skylake CPU,
offering a post-quantum security level exceeding 120 bits.

82

Key Agreement
Signatures
‘Fancy Crypto’

Questions?

84

Going Post-Quantum
Deirdre Connolly - SandboxAQ

