
Cryptography with Formal
Guarantees

Using HAX

Outline

● Formal what and why?
● How?
● The hax toolchain
● Hands-on

 hax demo tutorial

https://github.com/hacspec/hax/blob/franziskus/toronto-2024/examples/README.md

Why Formal Verification?

[...] testing is a necessary but insufficient step in
the development process to fully reduce

vulnerabilities at scale [...]

Wycheproof
ECDSA P256

471 Tests

Possible
Inputs

64 bytes
Signature

64 bytes
public key

PQXDH

https://cryspen.com/post/pqxdh/

TLS 1.3

Formal Methods for Performance

Formal Methods for Performance

Verify when Review
& Exhaustive Testing
is impossible

Verify to optimize
with confidence

How? 🤨

“[...] correctness is defined as the ability
of a piece of software to meet a specific

[...] requirement”

hax

High Assurance Translations

hax: A Tool Framework for Rust Verification

● Accepts a largish (and expanding) subset of safe Rust
○ Including hacspec, a purely functional spec language in Rust

● Translates it to formal models in F* or Coq
○ Upcoming backends for EasyCrypt, ProVerif, Lean, …

● Usable and pragmatic design choices, not dogmatic

● Verify panic-freedom, correctness, security,...
for the Rust code you care about,
using the tool of your choice.

● Rust Core: an annotated version of the Rust Core library
● Backends: new backends for Lean, EasyCrypt, ProVerif

● Verified
○ PQ Crypto: verified Rust code for Kyber/ML-KEM, ...
○ OS Modules: verified kernel code for RIOT-OS
○ Protocols: verified code for EDHOC, MLS, TLS 1.3, …
○ Contracts: verified canisters for Internet Computer

hax: ongoing projects

hax: Ongoing Challenges & Future Work

● Handle all the Rust code we want to handle

● Improve push-button verification

● Annotations in the proof assistant

● Proof assistant error messages

● IDE integration

● Correctness arguments of translations (research)

Can I use hax?

YES

Will there be bugs 🐞?

YES

hax: Ongoing Challenges & Future Work

● Handle all the Rust code we want to handle

● Improve push-button verification

● Annotations in the proof assistant

● Proof assistant error messages

● IDE integration

● Correctness arguments of translations (research)

hax: Process

hax: Process

hax: Process

1. Asserts
2. Make the requirements formal
3. hax attributes for “design by contract”
4. F* statically checks that the properties hold

hax: Process

1. Asserts
2. Make the requirements formal
3. hax attributes for “design by contract”
4. F* statically checks that the properties hold

https://cryspen.com/post/ml-kem-verification/

https://cryspen.com/post/ml-kem-verification/

● Specification is ground truth
● Manual inspection

○ Spec must be succinct & easy to read
● Tests

○ Test vectors
○ Test against other implementations

Ensure specification is correct

What do we prove?

● Panic freedom
● Secret independence
● Correctness (spec equivalence)
● Other properties when desirable

○ Examples

deserialize(serialize(x)) == x

decrypt(encrypt(y)) == y

Demo & Hands-on

Tasks

● Extract F*
● Lax typecheck F*
● Typecheck F* (panic freedom)
● Modify pre-conditions in Rust

(and try to typecheck again)

Examples

● Chacha20
● Barrett reduction
● Compression in ML-KEM
● Write your own code!

Get together in small groups

Start docker and play with the
examples

~/hax/examples

cargo hax into fstar

cargo hax into -i ‘-** +**::process_order’ fstar

Thanks https://github.com/hacspec/hax

