Deploying 2PC ECDSA
Signatures in the Wild

RWC 2024
Open Source Cryptography Workshop OSCW 2024

Hey!

iraklis@silencelaboratories.com

Done things with Inpher,Parfin,Heliax,ZenGo
Research with EURECOM, NJIT, UofA, EPFL, Inria
Head Cryptography/Security Architect @SIL

Deploying TSS libraries for different stakeholders
DKLS23+Identifiable abort

Already behind Metamask as a snap

Soon as a Google Colab notebook

S.L

ENCE

ABORATORIES

mailto:iraklis@silencelaboratories.com

Agenda

e Recap: ECDSA Signatures and MPC 2P ECDSA Sigs
e Sec vs Efficiency
o FBvuln
o System solution vs cryptography solution
e Maintaining open source cryptography
o Challenges
o Architecture
o Implementation
e 2PC ECDSA on GCP in one click

Standard Cryptography

e Encryption: Protect messages end to end
e PKE: RSA, Palillier, Elgamal: TLS, smart cards
e Symmetric: AES, ChaCha used daily
e Authentication:
e Signatures: RSA, ECDSA,Schnorr,EdDSA
e MAC:HMAC
e KDF:
e PBKDF: Argon
e HKDF: HMAC
e Used daily in emails, online banking, smart cards, access control

ECDSA Signature

e Keygen():
e Choose a secret signing x from an appropriate group
e Publish your public key pk:= G.x
e Sign(m,x):
Choose a random nonce k from an appropriate group
Compute R=G.k, take the x coordinate thereof rx
Setr=rx
Compute s = k.inv (H(m)+x.r)
Output r,s
e \Verify((r,s),pk,m)
e Compute a=H(m)aandb =r/s
U=G.a+Gb
Let u=(ux.uy)
If r==ux accept, otherwise reject

MPC for signatures

MPC can compute any function
Signature computation is a mathematical equation

Input a secret key and a message
Used to avoid
SPOF

Sig(sk,msg) = o

2MPC ECDSA - KeyGen

N

Chose sk1 at random compute pk1=Gsk1 Chose sk2 at random compute pk2=Gsk2
Chose pk,dk of a PHE pk2

4—
Q=pk2sk1=Gsk1sk2 pk1

— Q:pk1 sk=(Gsk1sk2

e Q is the common public ECDSA key
e Q corresponds to sk=sk1*sk2, but nobody knows it in one place
e But still parties can sign under the imaginary sk which verifies to Q

2MPC ECDSA - Sign

m<msg> Dmsg)

Chose k1 at random compute Gk Chose k2 at random compute Gk2
k2
<&
R=Gk2k1 Gk1
—_—) R=Gk1k2
c1 = PHE_pk(H(msg)/k1) c1,c2 _ c3=c1-2=PHE_pk(H(msg)/k1)*2=PHE_pk(H(msg)/k)
c2 = PHE_pk(rx*sk1/k1) c4=c2sk22=PHE_pk(rx*sk1)/k1)sk?/k2= PHE_pk(rx*sk)/k)

c5=c3*c4=PHE_pk(H(msg)/k)*PHE_pk(rx*sk)/k =
PHE_pk(H(msg)+rx*sk)/k)

ch
—

PHD_dk(c5)=PHD_dk(PHE_pk(H(msg)+rx*sk)/k)=H(msg)+rx*sk)/k
Outputs sig=(rx=x coordinate of R,s)=H(msg)+rx*sk)/k

Sign

|]

» ¢1,c2,c3 = do_some_cryptography()
/ecdsalsign/first - id,c1

<
* s1,s2 = do_some_cryptography()
» Store in t1 id:c1
» Store in t2 id:s2 s

>

» ¢4 = do_some_cryptography(m,c2,c3,s1)
4/ecdsa/sign/second - id,m,c4

» Get from t2 id:s2

Get from t1 id:c1

sig = do_some_cryptography(m,c4,s2,c1)

If ECDSA.verify(sig) == correct then send sig
Else fail Sig

Practical Key-Extraction Attacks in Leading MPC Wallets
F b attaCk Nikolaos Makriyannis* Oren Yomtov* Arik Galansky*

January 29, 2024
Exploit the last step of sign/second.
Sending client side multiple malformed c4’s and from the binary
result :success/fail sig, adv could extract one bit at a time and finally recover
only server secret share x1 entirely.
In practise 256 signing rounds where fail happens at each 0 bit
The problem is that at the last step the server should abort execution per
paper but code wasn’t aborting.
e Failing signatures in theory cannot occur from non-malicious clients

e https://www.fireblocks.com/blog/lindell17-abort-vulnerability-technical-report

https://www.fireblocks.com/blog/lindell17-abort-vulnerability-technical-report

Attack Takeover

- https://github.com/coinbase/waas-sdk-react-native — prior to version 1.0.0

 https://github.com/ZenGo-X/gotham-city / https://github.com/ZenGo-X/multi-
party-ecdsa — prior to tag v1.0.0 (https://github.com/ZenGo-X/gotham-city/
releases/tag/v1.0.0) ;o o G " Je=ver

[cryptography [wbs [SCA [Usetulphrases tha.. [E] Researchpapers-.. K Security and Priva.. @) iscr-deadline @ mathandcomp.pa! (3 Comparing G

I Fireblocks Platform c Dovelop Company Pricing Login

the community to strengthen and advance security standards in the digital asset space.
Being aware of your vendor's security status Is cruclal to ensuring your business runs efficiently w
potential disruptions. That's why Fireblocks works diligently to communicate potential vulnerabiliti

the cryptography ecosystem.

The following vendors have confirmed the remediation of their MPC protocols.

VENDORS MPC PROTOCOL DEPLOYED STATUS

Coinbase (Waa$) Lindell 17 SECURE
. Zengo Lindell 17 SECURE

https://github.com/coinbase/waas-sdk-react-native
https://github.com/ZenGo-X/gotham-city
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/gotham-city/releases/tag/v1.0.0
https://github.com/ZenGo-X/gotham-city/releases/tag/v1.0.0

Abort - System Mitigation

|]

Ifid in » ¢1,c2,c3 = do_some_cryptography()
Abort db block /ecdsalsign/first - id,c1
R
51,52 = AU raphy()
» Store in t1 id:c1
« Store in t2 id:s2 s’ >

» ¢4 = do_some_cryptography(m,c2,c3,s1)
4/ecdsa/sign/second - id,m,c4

» Get from t2 id:s2

Get from t1 id:c1

sig = do_some_cryptography(m,c4,s2,c1)

If ECDSA.verify(sig) == correct then send sig

Else fail If fail mark Sig
that id in the db

Cryptography mitigation

Is there a better solution?

That will put extra 100-150ms

https://github.com/silence-laboratories/rust-2-party-ecdsa

P2 still learns the bits up until the first fail

ZKP for the correct structure of round 1 msg from P2

3 Mitigation
Recall that P, calculates c3 = (1 +wuy - N) - ¢, - v mod N?, where u; = [k; "H(m) mod g] + pg and
Uy =To T+ k;l mod g and v « [N].
3.1 ZK Proof
Consider the relation R that consists of tuples (C, cgey, N;juy,uz,v) such that
C=Q1+u-N)-¢2, oV mod N?

and (u;, uy) are small (say smaller than 2700

). The standard sigma protocol for the relation R goes as follows:
1. Prover sends D = (1+a; - N) - l,';:fq - 8N mod N2 for oy, [289) and 8 « [N]
2. Verifier replies with e + {0,1}
3. Prover returns (2, zp, w) such that
z1 = a1 + euwq
2y = (g + euyp
w=p8-vN mod N

Verification:

e Check that uy,uy € £2800
e Check that (1+2z; - N)- c;’z_'::y cwN =D.C¢ mod N?

ldeal Cryptography Stack Exposure

Reality

Pubhc gi‘thub private g?thub

7~

core erypto lib J core erypto lib J

.

sdlki l | B?no(ings I
_

OPQHSOUPCQ

Issues

How to maintain open source repos being used in production?
Clients want everything open sourced
Stakeholders do not want to open source everything or not all the parts
Maintaining private and public repos becomes challenging:
o Slow pipelines
o Duplicate code
o Not transparent

Open source cryptography stack goals

Transparency

Simplicity Interoperability

Avoid double maintenance Efficient pipelines

Abstract Architecture

KeyGen Sign
KeyGen 1 Sign1)
Round 2 [

Round 3
Round 4

HTTP Server

(Auth 1)

HTTP Server

Abstracting

/// The Db trait allows different DB's to implement a
common API for insert and get
#[async trait]
pub trait Db: Send + Sync {
async fn insert(
&self,
key: &DbIndex,
table name: &dyn MPCStruct,
value: &dyn Value,
-> Result< (), DatabaseError>;

&DbIndex,
table name: &dyn MPCStruct,
) —-> Result<Option<Box<dyn Value>>, DatabaseError>;
async fn has active share(&self, customerId: &str)
-> Result<bool, String>;

/// the granted function implements the logic of tx
authorization. If no tx authorization is needed the
function returns always true

fn granted (&self, message: &str, customer id: &str)
-> Result<bool, DatabaseError>;

Defaulting cryptographic endpoints

#[async trait] #lasync_trait]
bub trait KeyGen { pub trait Sign {
///first round of Keygen async fn sign first(
async fn first(state: &State<Mutex<Box<dyn Db>>>,
state: &State<Mutex<Box<dyn Db>>>, claim: Claims,
claim: Claims, id: String,
) -> Result<Json< (String, KeyGenFirstMsg)>, String> {..code..} eph key gen first message party two: Json<party two:

async fn second() -> Result<Json<party one::EphKeyGenFirstMsg>, String>
state: &State<Mutex<Box<dyn Db>>>, . -
async fn sign_second(

claim: Clai ,
ce s state: &State<Mutex<Box<dyn Db>>>,

id: String,)
dlog proof: Json<DLogProof>, claim: Claims,

) -> Result<Json<partyl::KeyGenPartylMessage2>, String> {..cod id: String,
async fn third(request: Json<SignSecondMsgRequest>,

state: &State<Mutex<Box<dyn Db>>>,) —> Result<Json<party one::SignatureRecid>, String> {..cc
claim: Claims,
id: String,
party 2 pdl first message: Json<party two::PDLFirstMessage>,

) —-> Result<Json<party one::PDLFirstMessage>, String> {..code..}

async fn fourth(

state: &State<Mutex<Box<dyn Db>>>,
claim: Claims,
id: String,
party two pdl second message: Json<party two::PDLSecondMessage>,

) -> Result<Json<party one::PDLSecondMessage>, String> {..code..}

Wrap Default Impl

e Most http servers in rust ecosystem do not allow mount directly default imps
e Another layer of abstraction is needed

#[post ("/ecdsa/keygen/first", format = "json")]
pub async fn wrap keygen first(
state: &State<Mutex<Box<dyn Db>>>,
claim: Claims,
) —> Result<Json<(String, KeyGenFirstMsg)>, String> ({
struct Gotham {}
impl KeyGen for Gotham {}
Gotham::first (state, claim) .await

}

[post ("/ecdsa/keygen/<id>/second", format = "json", data = "<dlog proof>")]
pub async fn wrap keygen second (

state: &State<Mutex<Box<dyn Db>>>,

claim: Claims,

id: String,

dlog proof: Json<DLogProof>,
) —> Result<Json<partyl::KeyGenPartylMessage2>, String> ({

struct Gotham {}

impl KeyGen for Gotham {}

Gotham: :second(state, claim, id, dlog proof) .await

pub struct PublicGotham {
rocksdb client: rocksdb::DB,

Mounting 2ZMPC ECDSA Server lnpl KeyGen for PublicGotham (]

impl Sign for PublicGotham {}
pub fn get server () -> Rocket<Build> ({

let x = PublicGotham: :new() ;
rocket::Rocket::build()
.register("/", catchers![internal error, not found, bad request])
.mount (
u/u ,
routes! |
gotham engine::routes::wrap keygen first,
gotham engine::routes::wrap keygen second,
gotham engine::routes::wrap keygen third,
gotham:engine: :routes: :wrap:keygen:fourth,
gotham engine::routes::wrap chain code first message,
gotham engine::routes::wrap chain code second message,
gotham engine::routes::wrap sign first,
gotham engine::routes::wrap sign second,

I
)

.manage (Mutex: :new (Box: :new(x) as Box<dyn gotham engine::traits

https://github.com/ZenGo-X/gotham-engine

https://github.com/ZenGo-X/gotham-engine

Takeover
e 1TSS protocols are running in real world
e Transparency
e Abstracting through traits, dyn trait objects
e MPC is not a panacea
e It brings complexity - we can improve

:B N Fireblocks
BitGo. ﬁ ’
et

. copper

& zengo

o Dfns

Silence Laboratories

Google Colab Notebook 2ZMPC ECDSA

e White label a 2 party ECDSA wallet between GCP server and your phone
e Download on your android: https://drive.google.com/file/d/
1jT6NIQBgMO_gB1EWH5UN9PRmM99a7yO0D/view?usp=drive_link
e hitps://gcsdemo.silencelaboratories.com

https://drive.google.com/file/d/1jT6NlQBqMO_qB1EwH5UN9PRm99a7yO0D/view?usp=drive_link
https://drive.google.com/file/d/1jT6NlQBqMO_qB1EwH5UN9PRm99a7yO0D/view?usp=drive_link
https://gcsdemo.silencelaboratories.com

iraklis @silencelaboratories.com

https://github.com/silence-laboratories/dkls23-rs
https://snaps.metamask.io/snap/npm/silencelaboratories/silent-shard-snap/

mailto:iraklis@silencelaboratories.com
https://github.com/silence-laboratories/dkls23-rs+IA
https://snaps.metamask.io/snap/npm/silencelaboratories/silent-shard-snap/

