
Moreno Ambrosin
ambrosin@google.com March, 2023ISE-Crypto

Tink Mechanics

Motivation: Cryptographic libraries are tricky to use

● Often expose low-level APIs that require in-depth expertise

○ Developers shouldn’t need to focus on cryptography...

● Simple mistakes can have serious consequences

int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,

 ENGINE *impl, const unsigned char *key, const unsigned char *iv);

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,

 int *outl, const unsigned char *in, int inl);

int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);

2

What is Tink?

Tink concepts

Key management

Next Steps

Q&A

01

02

03

04

05

Outline

3

● A multi language and multi-platform open source cryptography library

○ github.com/google/tink

○ Documentation: developers.google.com/tink

○ Used by Google Cloud customer, Jetpack Security library, etc.

● Design goals:

○ Secure and easy to use APIs

■ Hard to misuse, hide low-level details

○ Support for key management

○ Extensible

What is Tink?

4

https://github.com/google/tink
https://developers.google.com/tink

● Currently implemented in

○ Java, C++, Python, Go, Obj-C

● Built on top of standard and/or established crypto libraries

○ BoringSSL/OpenSSL (C++)

○ BoringSSL (Python, Obj-C)

○ Java JCE/Conscrypt

○ crypto and x/crypto (Go)

What is Tink? (Cont.)

5

● Abstract cryptographic functionality

● Defines the functionality at a high-level and its security properties

Tink concepts - Primitive

class Aead(metaclass=abc.ABCMeta):

 @abc.abstractmethod
 def encrypt(self, plaintext: bytes, associated_data: bytes) -> bytes:
 # ...

 @abc.abstractmethod
 def decrypt(self, ciphertext: bytes, associated_data: bytes) -> bytes:
 # ...

6

Example: AEAD encrypt
import tink

from tink import aead

Read or create a key material.

keyset_handle = ...

Obtain an AEAD primitive.

aead_primitive = keyset_handle.primitive(aead.Aead)

Use the primitive to encrypt.

ciphertext = aead_primitive.encrypt(plaintext, associated_data)

7

● Key material and metadata (parameters and algorithm)

○ Identified by a type URL, e.g.,

type.googleapis.com/google.crypto.tink.AesGcmKey

○ E.g., a Tink AEAD key specifies:

■ How the plaintext is encrypted and encoded

■ How a ciphertext is decrypted

● In Tink an AES-EAX key != AES-GCM key

Tink concepts - Key

8

● A key manager is a class that creates primitives from keys

● Tink uses a registry to store available key managers

○ Users must initialize it with built-in key managers and/or add custom ones

Tink concepts - Key Manager

class AesGcmKeyManager(core.KeyManager[aead.Aead]):

 def primitive(self, key_data: tink_pb2.AesGcmKey) -> aead.Aead:

 # Create primitive that implements AES-GCM with the given key.

 def key_type(self) -> str:

 return "type.googleapis.com/google.crypto.tink.AesGcmKey"

 # ...9

● A set of keys that implements the same primitive

● It facilitates key rotation

● Each key has a unique ID (within a keyset)

○ Usually prefix to produced ciphertexts, signatures, tags

● Only one key at a time is primary

○ Used to e.g., encrypt or sign

Tink concepts - Keyset

Keyset - Aead

#2 AesEaxKey {...}

#3 AesHmacKey {...}

#1 AesGcmKey {...}

10

● A keyset handle is a wrapper around a keyset

● Restricts access to sensitive data

● Provides APIs to obtain a “wrapping” primitive for the keyset

● E.g., for Aead:

○ encrypt(...) uses the primary key

○ decrypt(...) uses the key whose ID is in the ciphertext

Tink concepts - Keyset handle

KeysetHandle

Keyset - Aead

#1 AesGcmKey {...}

#2 AesEaxKey {...}

#3 AesHmacKey {...}

11

Example: AEAD encrypt
import tink

from tink import aead

Make all the AEAD primitives available.

aead.register()

Create a keyset with a single key and get a handle to it.

keyset_handle = tink.new_keyset_handle(aead.aead_key_templates.AES128_GCM)

Wrap the keyset into an AEAD primitive.

aead_primitive = keyset_handle.primitive(aead.Aead)

Use the primitive to encrypt (uses the primary key!).

ciphertext = aead_primitive.encrypt(plaintext, associated_data)
12

Key management - Key rotation with keysets

KeysetHandle

Keyset - Aead

#2 AesGcmKey {...}

#1 AesCtrHmacKey {...}

Key #2 is primary key

13

Key management - Key rotation with keysets

KeysetHandle

Keyset - Aead

#2 AesGcmKey {...}

#1 AesCtrHmacKey {...}

Key #2 is primary key

KeysetHandle

Keyset - Aead

#2 AesGcmKey {...}

#1 AesCtrHmacKey {...}

#3 AesHmacKey {...}

Key #2 is primary key
Key #3 is added

14

Key management - Key rotation with keysets

KeysetHandle

Keyset - Aead

#2 AesGcmKey {...}

#1 AesCtrHmacKey {...}

Key #2 is primary key

KeysetHandle

Keyset - Aead

#2 AesGcmKey {...}

#1 AesCtrHmacKey {...}

#3 AesHmacKey {...}

KeysetHandle

Keyset - Aead

#2 AesGcmKey {...}

#1 AesCtrHmacKey {...}

#3 AesHmacKey {...}

Key #2 is primary key
Key #3 is added

Key #3 is primary key

15

Key management - KMS support

● Tink uniformly handles external keys

● For example, Tink allows getting AEAD primitive form a KMS key

○ KMS AEAD key KmsAeadKey is “just another key type”

■ Simply “points” to the KMS key with its URI

○ KmsAeadKeyManager construct AEAD from the key URI

■ Using KMS-specific clients, such as GcpKmsClient.

16

Example: AEAD Encrypt with KMS
import tink

from tink import aead

from tink.integration import gcpkms

Register a KMS client that is bound to kms_key.

gcpkms.GcpKmsClient.register_client(kms_key, credential_path)

Key template for the key URI.

kms_key_template = aead.aead_key_templates.create_kms_aead_key_template(kek_uri)

Create a keyset with a single KMS key and get a handle to it.

keyset_handle = tink.new_keyset_handle(kms_key_template)

Wrap the keyset into an AEAD primitive.

aead_primitive = keyset_handle.primitive(aead.Aead)

Use the KMS key to encrypt.

ciphertext = aead_primitive.encrypt(plaintext, associated_data)

17

Example: Encrypt keyset with KMS and serialize it

18

import tink

from tink import aead

from tink.integration import gcpkms

Register a KMS client that is bound to kms_key.

gcpkms.GcpKmsClient.register_client(kms_key, credential_path)

Key template for the key URI.

kms_key_template = aead.aead_key_templates.create_kms_aead_key_template(kek_uri)

Create a keyset with a single KMS key and get a handle to it.

keyset_handle = tink.new_keyset_handle(kms_key_template)

Wrap the keyset into an AEAD primitive.

aead_primitive = keyset_handle.primitive(aead.Aead)

Encrypt the keyset with the KMS key and serialize as JSON.

keyset_handle_to_encrypt.write_with_associated_data(

 tink.JsonKeysetWriter(text_io_stream), aead_primitive, associated_data)

Key management - The Tinkey CLI tool
Keyset - Aead

● CLI tool for managing keysets w/ KMS integration

readonly KEK_KMS_KEY_URI="gcp-kms://..."

readonly KMS_CREDENTIALS_FILE_PATH="credentials.json"

Create a keyset with one AES128-GCM key, encrypts it with a KMS key and outputs to file.

tinkey create-keyset --key-template AES128_GCM --out encrypted-keyset.json \

 --master-key-uri "${KEK_KMS_KEY_URI}" --credential "${KMS_CREDENTIALS_FILE_PATH}"

#2 AesGcmKey {...}

19

Key management - The Tinkey CLI tool

● CLI tool for managing keysets w/ KMS integration

readonly KEK_KMS_KEY_URI="gcp-kms://..."

readonly KMS_CREDENTIALS_FILE_PATH="credentials.json"

Create a keyset with one AES128-GCM key, encrypts it with a KMS key and outputs to file.

tinkey create-keyset --key-template AES128_GCM --out encrypted-keyset.json \

 --master-key-uri "${KEK_KMS_KEY_URI}" --credential "${KMS_CREDENTIALS_FILE_PATH}"

Add non-primary key to the keyset; outputs encrypted with the KMS key to a new file as JSON.

tinkey add-key --key-template AES256_GCM \

 --in encrypted-keyset.json --out new-encrypted-keyset.json \

 --master-key-uri "${KEK_KMS_KEY_URI}" --credential "${KMS_CREDENTIALS_FILE_PATH}"

Keyset - Aead

#2 AesGcmKey {...}

#1 AesGcmKey {...}

20

Next steps

● Splitting into multiple repos and migrate to github.com/tink-crypto

○ Decouple versions

○ Cross-language compatibility documented

● New APIs (WIP)

○ Access to individual keys

○ Improve configurability

○ Monitoring hooks

● Overhaul documentation

21

https://github.com/tink-crypto

Takeaways

● Tink provides high-level easy to use API

● Tink is multi-language and multi platform

● Tink provides support/tooling for key management

● We use Tink internally at Google but is also open source

○ github.com/google/tink

○ Contributions are welcome!

22

https://github.com/google/tink

