
Proprietary + Confidential

Thai Duong Mar 2023Open Source
Cryptography Workshop

Fantastic Crypto Bugs and Where to
Find Them

Proprietary + Confidential

Fantastic Crypto Bugs

Live Demo

Advanced Techniques

Q&A

01

02

03

04

Agenda

Proprietary + Confidential

Fantastic Crypto Bugs

Bad Algorithms Low level APIs Common Mistakes

● Weak PRNG
● Unauthenticated

encryption
● [AES-]GCM
● Password-based

encryption
● RSA PKCS v1.5

encryption
● ECDSA

● OpenSSL/BoringSSL
● Java Cryptography

Extension
● PyCrypto
● Golang Crypto

● Unauthenticated public
keys

● Horton principle
violations

● Length extension
attacks

● Padding oracle attacks
● Invalid curve attacks
● Non-constant time

comparisons

Proprietary + Confidential

● We need unpredictable randomness to do crypto

● Unfortunately, most generators are predictable

○ glibc: rand()/srand()

○ Java: java.lang.Math.random()

○ Javascript: Math.random()

○ Golang: math/rand

○ Python: random.random()

● You want to find PRNGs that take a seed from users. Most of the time it’d be

seeded with, well, time

Weak PRNG

Proprietary + Confidential

● Block ciphers can only encrypt a fixed size of data. To encrypt more, one needs a

block cipher mode of operation

● Unfortunately, most modes are insecure: ECB, CBC, CTR, CFB, etc. Depending

on the usage, you can easily recover or modify the plaintext

● The most common stream cipher RC4 also allows you to modify, and, in certain

cases (WEP), recover the plaintext

Unauthenticated Encryption

Proprietary + Confidential

● This is the most popular authenticated encryption mode, recommended by NIST

● It has many issues though

○ It requires a nonce. If the nonce is reused, it becomes unauthenticated

○ It is NOT key committing, e.g., it’s possible to find AES_GCM(k1, msg1) ==

AES_GCM(k2, msg2)

AES-GCM

Proprietary + Confidential

● Most user passwords have less than 40 bits of entropy, this means PBE only

provides 40-bit security level

Password-based Encryption (RFC 2898)

Proprietary + Confidential

● This is an old standard. Judging from the number of attacks found each year, it

remains super popular

○ https://eprint.iacr.org/search?q=bleichenbacher

● Many implementations leak side channel information (e.g., timing, errors, etc.)

that allows plaintext recovery

RSA PKCS v1.5 Encryption

https://eprint.iacr.org/search?q=bleichenbacher

Proprietary + Confidential

● ECDSA requires a nonce. If a single nonce is reused to sign two messages, you

can recover the private key

● If the nonces of a handful messages are biased or partially leaked, you can also

recover the private key

● Recently, someone found that Java accepted (0, 0) as a valid signature for all

messages

○ This is due to ECDSA requiring finite field arithmetic which is hard to

implement correctly

ECDSA

https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

Proprietary + Confidential

Where to Find [Fantastic Crypto Bugs]

1. Choose a keyword 2. Search GitHub 3. Determine
exploitability

● nonce salt key IV
password

● MD5 AES RC4 RSA
ECDSA

● CBC CRT CFB ECB GCM
● Math.random()
● random.random()
● math/rand
● Cipher.getInstance()
● BadPaddingException

● Your favourite open
source projects

● All of GitHub if you are
feeling lucky

● Read and play with the
code

● File bugs!

Proprietary + Confidential

Let’s go find some bugs!

Proprietary + Confidential

Advanced Techniques

CodeQL CryptoFuzz Project Wycheproof

CodeQL helps automate code
analysis. It lets you query code
as though it were data. You can
write a query to find all variants
of a crypto vulnerability, and
share your query to help others
do the same.

Cryptofuzz, well, fuzzes
cryptographic libraries and
compares their output in order
to find implementation
discrepancies. It’s quite
effective and has already found
a lot of bugs.

Project Wycheproof tests
crypto libraries against known
attacks. It provides tons of
ready to use of test vectors
that have helped found a lot of
bugs.

